Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 12620, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35871255

RESUMEN

Many asexually-propagating marine invertebrates can survive extreme environmental conditions by developing dormant structures, i.e., morphologically simplified bodies that retain the capacity to completely regenerate a functional adult when conditions return to normal. Here, we examine the environmental, morphological, and molecular characteristics of dormancy in two distantly related clonal tunicate species: Polyandrocarpa zorritensis and Clavelina lepadiformis. In both species, we report that the dormant structures are able to withstand harsher temperature and salinity conditions compared to the adults. The dormant structures are the dominant forms these species employ to survive adverse conditions when the zooids themselves cannot survive. While previous work shows C. lepadiformis dormant stage is present in winters in the Atlantic Ocean and summers in the Mediterranean, this study is the first to show a year-round presence of P. zorritensis dormant forms in NW Italy, even in the late winter when all zooids have disappeared. By finely controlling the entry and exit of dormancy in laboratory-reared individuals, we were able to select and characterize the morphology of dormant structures associated with their transcriptome dynamics. In both species, we identified putative stem and nutritive cells in structures that resemble the earliest stages of asexual propagation. By characterizing gene expression during dormancy and regeneration into the adult body plan (i.e., germination), we observed that genes which control dormancy and environmental sensing in other metazoans, notably HIF-α and insulin signaling genes, are also expressed in tunicate dormancy. Germination-related genes in these two species, such as the retinoic acid pathway, are also found in other unrelated clonal tunicates during asexual development. These results are suggestive of repeated co-option of conserved eco-physiological and regeneration programs for the origin of novel dormancy-germination processes across distantly related animal taxa.


Asunto(s)
Latencia en las Plantas , Urocordados , Animales , Germinación/genética , Latencia en las Plantas/genética , Estaciones del Año , Semillas/genética , Temperatura , Urocordados/genética
2.
Methods Mol Biol ; 2450: 3-25, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359300

RESUMEN

In his prominent book Regeneration (1901), T.H. Morgan's collected and synthesized theoretical and experimental findings from a diverse array of regenerating animals and plants. Through his endeavor, he introduced a new way to study regeneration and its evolution, setting a conceptual framework that still guides today's research and that embraces the contemporary evolutionary and developmental approaches.In the first part of the chapter, we summarize Morgan's major tenets and use it as a narrative thread to advocate interpreting regenerative biology through the theoretical tools provided by evolution and developmental biology, but also to highlight potential caveats resulting from the rapid proliferation of comparative studies and from the expansion of experimental laboratory models. In the second part, we review some experimental evo-devo approaches, highlighting their power and some of their interpretative dangers. Finally, in order to further understand the evolution of regenerative abilities, we portray an adaptive perspective on the evolution of regeneration and suggest a framework for investigating the adaptive nature of regeneration.


Asunto(s)
Evolución Biológica , Biología Evolutiva , Animales
3.
Front Cell Dev Biol ; 10: 843775, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237607

RESUMEN

Colonial tunicates are the only chordates that regularly regenerate a fully functional whole body as part of their asexual life cycle, starting from specific epithelia and/or mesenchymal cells. In addition, in some species, whole-body regeneration (WBR) can also be triggered by extensive injuries, which deplete most of their tissues and organs and leave behind only small fragments of their body. In this manuscript, we characterized the onset of WBR in Botryllus schlosseri, one colonial tunicate long used as a laboratory model. We first analyzed the transcriptomic response to a WBR-triggering injury. Then, through morphological characterization, in vivo observations via time-lapse, vital dyes, and cell transplant assays, we started to reconstruct the dynamics of the cells triggering regeneration, highlighting an interplay between mesenchymal and epithelial cells. The dynamics described here suggest that WBR in B. schlosseri is initiated by extravascular tissue fragments derived from the injured individuals rather than particular populations of blood-borne cells, as has been described in closely related species. The morphological and molecular datasets here reported provide the background for future mechanistic studies of the WBR ontogenesis in B. schlosseri and allow to compare it with other regenerative processes occurring in other tunicate species and possibly independently evolved.

4.
Biol Rev Camb Philos Soc ; 97(1): 299-325, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34617397

RESUMEN

Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.


Asunto(s)
Células Madre Adultas , Drosophila melanogaster , Animales , Diferenciación Celular , Fenotipo
5.
J Exp Zool B Mol Dev Evol ; 336(3): 191-197, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33819384

RESUMEN

The developmental and evolutionary principles of coloniality in marine animals remain largely unexplored. Although many common traits have evolved independently in different groups of colonial animals, questions about their significance for colonial life histories remain unanswered. In 2018 (Nov. 25 - Dec. 8), the inaugural course on the Evolution of Coloniality and Modularity took place at the Center for Marine Biology of the University of São Paulo (CEBIMAR-USP), Brazil. During the intensive two-week graduate-level course, we addressed some of the historical ideas about animal coloniality by focal studies in bryozoans, tunicates, cnidarians, and sponges. We discussed many historical hypotheses and ways to test these using both extant and paleontological data, and we carried direct observations of animal colonies in the different phyla to address questions about coloniality. We covered topics related to multi-level selection theory and studied colonial traits, including modular miniaturization, polymorphism, brooding, and allorecognition. Course participants carried out short research projects using local species of animals to address questions on allorecognition and regeneration in ascidians and sponges, fusion and chimerism in anthoathecate hydrozoans, and evolution of polymorphism in bryozoans. Although many questions remain unanswered, this course served as a foundation to continue to develop a developmental and evolutionary synthesis of clonal and modular development in colonial marine organisms.


Asunto(s)
Invertebrados/anatomía & histología , Invertebrados/crecimiento & desarrollo , Animales , Organismos Acuáticos/crecimiento & desarrollo , Organismos Acuáticos/fisiología , Invertebrados/fisiología
6.
J Exp Zool B Mol Dev Evol ; 336(3): 250-266, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32190983

RESUMEN

Tunicates encompass a large group of marine filter-feeding animals and more than half of them are able to reproduce asexually by a particular form of nonembryonic development (NED) generally called budding. The phylogeny of tunicates suggests that asexual reproduction is an evolutionarily plastic trait, a view that is further reinforced by the fact that budding mechanisms differ from one species to another, involving nonhomologous tissues and cells. In this review, we explore more than 150 years of literature to provide an overview of NED diversity and we present a comparative picture of budding tissues across tunicates. Based on the phylogenetic relationships between budding and nonbudding species, we hypothesize that NED diversity is the result of seven independent acquisitions and subsequent diversifications in the course of tunicate evolution. While this scenario represents the state-of-the-art of our current knowledge, we point out gray areas that need to be further explored to refine our understanding of tunicate phylogeny and NED. Tunicates, with their plastic evolution and diversity of budding, represent an ideal playground for evolutionary developmental biologists to unravel the genetic and molecular mechanisms regulating nonembryonic development, as well as to better understand how such a profound innovation in life-history has evolved in numerous metazoans.


Asunto(s)
Reproducción Asexuada , Urocordados/crecimiento & desarrollo , Animales , Evolución Biológica , Filogenia , Urocordados/clasificación
7.
J Exp Zool B Mol Dev Evol ; 336(3): 198-211, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32306502

RESUMEN

Nearly half of the animal phyla contain species that propagate asexually via agametic reproduction, often forming colonies of genetically identical modules, that is, ramets, zooids, or polyps. Clonal reproduction, colony formation, and modular organization have important consequences for many aspects of organismal biology. Theories in ecology, evolution, and development are often based on unitary and, mainly, strictly sexually reproducing organisms, and though colonial animals dominate many marine ecosystems and habitats, recognized concepts for the study of clonal species are often lacking. In this review, we present an overview of the study of colonial and clonal animals, from the historic interests in this subject to modern research in a range of topics, including immunology, stem cell biology, aging, biogeography, and ecology. We attempt to portray the fundamental questions lying behind the biology of colonial animals, focusing on how colonial animals challenge several dogmas in biology as well as the remaining puzzles still to be answered, of which there are many.


Asunto(s)
Células Clonales , Invertebrados/crecimiento & desarrollo , Invertebrados/fisiología , Reproducción Asexuada , Animales , Organismos Acuáticos , Evolución Biológica , Invertebrados/anatomía & histología
8.
Cells ; 9(9)2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825163

RESUMEN

Cells with contractile functions are present in almost all metazoans, and so are the related processes of muscle homeostasis and regeneration. Regeneration itself is a complex process unevenly spread across metazoans that ranges from full-body regeneration to partial reconstruction of damaged organs or body tissues, including muscles. The cellular and molecular mechanisms involved in regenerative processes can be homologous, co-opted, and/or evolved independently. By comparing the mechanisms of muscle homeostasis and regeneration throughout the diversity of animal body-plans and life cycles, it is possible to identify conserved and divergent cellular and molecular mechanisms underlying muscle plasticity. In this review we aim at providing an overview of muscle regeneration studies in metazoans, highlighting the major regenerative strategies and molecular pathways involved. By gathering these findings, we wish to advocate a comparative and evolutionary approach to prompt a wider use of "non-canonical" animal models for molecular and even pharmacological studies in the field of muscle regeneration.


Asunto(s)
Músculos/fisiología , Regeneración/fisiología , Animales
9.
Evodevo ; 10: 31, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31788180

RESUMEN

BACKGROUND: In various ascidian species, circulating stem cells have been documented to be involved in asexual reproduction and whole-body regeneration. Studies of these cell population(s) are mainly restricted to colonial species. Here, we investigate the occurrence of circulating stem cells in the solitary Styela plicata, a member of the Styelidae, a family with at least two independent origins of coloniality. RESULTS: Using flow cytometry, we characterized a population of circulating putative stem cells (CPSCs) in S. plicata and determined two gates likely enriched with CPSCs based on morphology and aldehyde dehydrogenase (ALDH) activity. We found an ALDH + cell population with low granularity, suggesting a stem-like state. In an attempt to uncover putative CPSCs niches in S. plicata, we performed a histological survey for hemoblast-like cells, followed by immunohistochemistry with stem cell and proliferation markers. The intestinal submucosa (IS) showed high cellular proliferation levels and high frequency of undifferentiated cells and histological and ultrastructural analyses revealed the presence of hemoblast aggregations in the IS suggesting a possible niche. Finally, we document the first ontogenetic appearance of distinct metamorphic circulatory mesenchyme cells, which precedes the emergence of juvenile hemocytes. CONCLUSIONS: We find CPSCs in the hemolymph of the solitary ascidian Styela plicata, presumably involved in the regenerative capacity of this species. The presence of proliferating and undifferentiated mesenchymal cells suggests IS as a possible niche.

10.
Evodevo ; 10: 7, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984365

RESUMEN

BACKGROUND: In tunicates, the capacity to build an adult body via non-embryonic development (NED), i.e., asexual budding and whole body regeneration, has been gained or lost several times across the whole subphylum. A recent phylogeny of the family Styelidae revealed an independent acquisition of NED in the colonial species Polyandrocarpa zorritensis and highlighted a novel budding mode. In this paper, we provide the first detailed characterization of the asexual life cycle of P. zorritensis. RESULTS: Bud formation occurs along a tubular protrusion of the adult epidermis, the stolon, in a vascularized area defined as budding nest. The bud arises through a folding of the epithelia of the stolon with the contribution of undifferentiated mesenchymal cells. This previously unreported mode of bud onset leads to the formation of a double vesicle, which starts to develop into a zooid through morphogenetic mechanisms common to other Styelidae. The budding nest can also continue to accumulate nutrients and develop into a round-shaped structure, designated as spherule, which represents a dormant form able to survive low temperatures. CONCLUSIONS: To understand the mechanisms of NED and their evolution, it is fundamental to start from a robust phylogenetic framework in order to select relevant species to compare. The anatomical description of P. zorritensis NED provides the foundation for future comparative studies on plasticity of budding and regeneration in tunicates.

11.
Proc Biol Sci ; 286(1899): 20190396, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30914011

RESUMEN

Higher diversity and dominance at lower latitudes has been suggested for colonial species. We verified this pattern in species richness of ascidians, finding that higher colonial-to-solitary species ratios occur in the tropics and subtropics. At the latitudinal region with the highest ratio, in southeastern Brazil, we confirmed that colonial species dominate space on artificial plates in two independent studies of five fouling communities. We manipulated settlement plates to measure effects of predation and competition on growth and survivorship of colonial versus solitary ascidians. Eight species were subjected to a predation treatment, i.e. caged versus exposed to predators, and a competition treatment, i.e. leaving versus removing competitors, to assess main and interactive effects. Predation had a greater effect on growth and survivorship of colonial compared to solitary species, whereas competition did not show consistent patterns. We hypothesize that colonial ascidians dominate at this subtropical site despite being highly preyed upon because they regrow when partially consumed and can adjust in shape and space to grow into refuges. We contend that these means of avoiding mortality from predation can have large influences on diversification patterns of colonial species at low latitudes, where predation intensity is greater.


Asunto(s)
Incrustaciones Biológicas , Cadena Alimentaria , Urocordados/fisiología , Animales , Brasil , Dinámica Poblacional , Especificidad de la Especie
12.
Evodevo ; 10: 3, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30867897

RESUMEN

BACKGROUND: In chordates, cardiac and body muscles arise from different embryonic origins. In addition, myogenesis can be triggered in adult organisms, during asexual development or regeneration. In non-vertebrate chordates like ascidians, muscles originate from embryonic precursors regulated by a conserved set of genes that orchestrate cell behavior and dynamics during development. In colonial ascidians, besides embryogenesis and metamorphosis, an adult can propagate asexually via blastogenesis, skipping embryo and larval stages, and form anew the adult body, including the complete body musculature. RESULTS: To investigate the cellular origin and mechanisms that trigger non-embryonic myogenesis, we followed the expression of ascidian myogenic genes during Botryllus schlosseri blastogenesis and reconstructed the dynamics of muscle precursors. Based on the expression dynamics of Tbx1/10, Ebf, Mrf, Myh3 for body wall and of FoxF, Tbx1/10, Nk4, Myh2 for heart development, we show that the embryonic factors regulating myogenesis are only partially co-opted in blastogenesis, and that markers for muscle precursors are expressed in two separate domains: the dorsal tube and the ventral mesenchyma. CONCLUSIONS: Regardless of the developmental pathway, non-embryonic myogenesis shares a similar molecular and anatomical setup as embryonic myogenesis, but implements a co-option and loss of molecular modules. We then propose that the cellular precursors contributing to heart and body muscles may have different origins and may be coordinated by different developmental pathways.

13.
Dev Biol ; 448(2): 342-352, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30563648

RESUMEN

During metamorphosis of solitary ascidians, part of the larval tubular nervous system is recruited to form the adult central nervous system (CNS) through neural stem-like cells called ependymal cells. The anteroposterior (AP) gene expression patterning of the larval CNS regionalize the distribution of the ependymal cells, which contains the positional information of the neurons of the adult nervous system. In colonial ascidians, the CNS of asexually developed zooids has the same morphology of the one of the post-metamorphic zooids. However, its development follows a completely different organogenesis that lacks embryogenesis, a larval phase and metamorphosis. In order to describe neurogenesis during asexual development (blastogenesis), we followed the expression of six CNS AP patterning genes conserved in chordates and five neural-related genes to determine neural cell identity in Botryllus schlosseri. We observed that a neurogenesis occurs de novo on each blastogenic cycle starting from a neurogenic transitory structure, the dorsal tube. The dorsal tube partially co-opts the AP patterning of the larval CNS markers, and potentially combine the neurogenesis role and provider of positional clues for neuron patterning. This study shows how a larval developmental module is reused in a direct asexual development in order to generate the same structures.


Asunto(s)
Tipificación del Cuerpo/genética , Cordados/crecimiento & desarrollo , Cordados/genética , Neurogénesis/genética , Animales , Biomarcadores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Larva/genética
14.
Mol Biol Evol ; 35(7): 1728-1743, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29660002

RESUMEN

Asexual propagation and whole body regeneration are forms of nonembryonic development (NED) widespread across animal phyla and central in life history and evolutionary diversification of metazoans. Whereas it is challenging to reconstruct the gains or losses of NED at large phylogenetic scale, comparative studies could benefit from being conducted at more restricted taxonomic scale, in groups for which phylogenetic relationships are well established. The ascidian family of Styelidae encompasses strictly sexually reproducing solitary forms as well as colonial species that combine sexual reproduction with different forms of NED. To date, the phylogenetic relationships between colonial and solitary styelids remain controversial and so is the pattern of NED evolution. In this study, we built an original pipeline to combine eight genomes with 18 de novo assembled transcriptomes and constructed data sets of unambiguously orthologous genes. Using a phylogenomic super-matrix of 4,908 genes from these 26 tunicates we provided a robust phylogeny of this family of chordates, which supports two convergent acquisitions of NED. This result prompted us to further describe the budding process in the species Polyandrocarpa zorritensis, leading to the discovery of a novel mechanism of asexual development. Whereas the pipeline and the data sets produced can be used for further phylogenetic reconstructions in tunicates, the phylogeny provided here sets an evolutionary framework for future experimental studies on the emergence and disappearance of complex characters such as asexual propagation and whole body regeneration.


Asunto(s)
Filogenia , Urocordados/genética , Animales , ARN Ribosómico 18S/genética , Reproducción Asexuada , Transcriptoma , Urocordados/crecimiento & desarrollo , Urocordados/metabolismo
15.
Front Zool ; 13: 45, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27708681

RESUMEN

BACKGROUND: Thaliaceans is one of the understudied classes of the phylum Tunicata. In particular, their phylogenetic relationships remain an issue of debate. The overall pattern of serotonin (5-HT) distribution is an excellent biochemical trait to interpret internal relationships at order level. In the experiments reported here we compared serotonin-like immunoreactivity at different life cycle stages of two salpid, one doliolid, and one pyrosomatid species. This multi-species comparison provides new neuroanatomical data for better resolving the phylogeny of the class Thaliacea. RESULTS: Adults of all four examined thaliacean species exhibited serotonin-like immunoreactivity in neuronal and non-neuronal cell types, whose anatomical position with respect to the nervous system is consistently identifiable due to α-tubulin immunoreactivity. The results indicate an extensive pattern that is consistent with the presence of serotonin in cell bodies of variable morphology and position, with some variation within and among orders. Serotonin-like immunoreactivity was not found in immature forms such as blastozooids (Salpida), tadpole larvae (Doliolida) and young zooids (Pyrosomatida). CONCLUSIONS: Comparative anatomy of serotonin-like immunoreactivity in all three thaliacean clades has not been reported previously. These results are discussed with regard to studies of serotonin-like immunoreactivity in adult ascidians. Lack of serotonin-like immunoreactivity in the endostyle of Salpida and Doliolida compared to Pyrosomella verticillata might be the result of secondary loss of serotonin control over ciliary beating and mucus secretion. These data, when combined with other plesiomorphic characters, support the hypothesis that Pyrosomatida is basal to these clades within Phlebobranchiata and that Salpida and Doliolida constitute sister-groups.

16.
Sci Rep ; 6: 27357, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27264734

RESUMEN

Organisms that have evolved alternative modes of reproduction, complementary to the sexual mode, are found across metazoans. The chordate Botryllus schlosseri is an emerging model for asexual development studies. Botryllus can rebuild its entire body from a portion of adult epithelia in a continuous and stereotyped process called blastogenesis. Anatomy and ontogenies of blastogenesis are well described, however molecular signatures triggering this developmental process are entirely unknown. We isolated tissues at the site of blastogenesis onset and from the same epithelia where this process is never triggered. We linearly amplified an ultra-low amount of mRNA (<10ng) and generated three transcriptome datasets. To provide a conservative landscape of transcripts differentially expressed between blastogenic vs. non-blastogenic epithelia we compared three different mapping and analysis strategies with a de novo assembled transcriptome and partially assembled genome as references, additionally a self-mapping strategy on the dataset. A subset of differentially expressed genes were analyzed and validated by in situ hybridization. The comparison of different analyses allowed us to isolate stringent sets of target genes, including transcripts with potential involvement in the onset of a non-embryonic developmental pathway. The results provide a good entry point to approach regenerative event in a basal chordate.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Reproducción Asexuada , Urocordados/embriología , Animales , Epitelio/embriología , Técnicas de Amplificación de Ácido Nucleico , Hibridación de Ácido Nucleico , Análisis de Secuencia de ARN , Transcriptoma
17.
Dev Biol ; 416(1): 235-248, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27208394

RESUMEN

In all non-vertebrate metazoan phyla, species that evolved non-embryonic developmental pathways as means of propagation or regeneration can be found. In this context, new bodies arise through asexual reproduction processes (such as budding) or whole body regeneration, that lack the familiar temporal and spatial cues classically associated with embryogenesis, like maternal determinants, or gastrulation. The molecular mechanisms underlying those non-embryonic developments (i.e., regeneration and asexual reproduction), and their relationship to those deployed during embryogenesis are poorly understood. We have addressed this question in the colonial ascidian Botryllus schlosseri, which undergoes an asexual reproductive process via palleal budding (PB), as well as a whole body regeneration by vascular budding (VB). We identified early regenerative structures during VB and then followed the fate of differentiating tissues during both non-embryonic developments (PB and VB) by monitoring the expression of genes known to play key functions in germ layer specification with well conserved expression patterns in solitary ascidian embryogenesis. The expression patterns of FoxA1, GATAa, GATAb, Otx, Bra, Gsc and Tbx2/3 were analysed during both PB and VB. We found that the majority of these transcription factors were expressed during both non-embryonic developmental processes, revealing a regionalization of the palleal and vascular buds. Knockdown of GATAa by siRNA in palleal buds confirmed that preventing the correct development of one of these regions blocks further tissue specification. Our results indicate that during both normal and injury-induced budding, a similar alternative developmental program operates via early commitment of epithelial regions.


Asunto(s)
Desarrollo Embrionario , Estratos Germinativos/embriología , Reproducción Asexuada , Factores de Transcripción/metabolismo , Urocordados/embriología , Animales , Ectodermo/embriología , Ectodermo/metabolismo , Endodermo/embriología , Endodermo/metabolismo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Estratos Germinativos/metabolismo , Reproducción Asexuada/genética , Urocordados/genética
18.
Evodevo ; 6: 17, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26171140

RESUMEN

BACKGROUND: Wnt signaling is one of the earliest and most highly conserved regulatory pathways for the establishment of the body axes during regeneration and early development. In regeneration, body axes determination occurs independently of tissue rearrangement and early developmental cues. Modulation of the Wnt signaling in either process has shown to result in unusual body axis phenotypes. Botryllus schlosseri is a colonial ascidian that can regenerate its entire body through asexual budding. This processes leads to an adult body via a stereotypical developmental pathway (called blastogenesis), without proceeding through any embryonic developmental stages. RESULTS: In this study, we describe the role of the canonical Wnt pathway during the early stages of asexual development. We characterized expression of three Wnt ligands (Wnt2B, Wnt5A, and Wnt9A) by in situ hybridization and qRT-PCR. Chemical manipulation of the pathway resulted in atypical budding due to the duplication of the A/P axes, supernumerary budding, and loss of the overall cell apical-basal polarity. CONCLUSIONS: Our results suggest that Wnt signaling is used for equivalent developmental processes both during embryogenesis and asexual development in an adult organism, suggesting that patterning mechanisms driving morphogenesis are conserved, independent of embryonic, or regenerative development.

19.
Evodevo ; 6: 11, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25932322

RESUMEN

BACKGROUND: Simple life cycles arise from complex life cycles when one or more developmental stages are lost. This raises a fundamental question - how can an intermediate stage, such as a larva, be removed, and development still produce a normal adult? To address this question, we examined the development in several species of pelagiid jellyfish. Most members of Pelagiidae have a complex life cycle with a sessile polyp that gives rise to ephyrae (juvenile medusae); but one species within Pelagiidae, Pelagia noctiluca, spends its whole life in the water column, developing from a larva directly into an ephyra. In many complex life cycles, adult features develop from cell populations that remain quiescent in larvae, and this is known as life cycle compartmentalization and may facilitate the evolution of direct life cycles. A second type of metamorphic processes, known as remodeling, occurs when adult features are formed through modification of already differentiated larval structures. We examined muscle morphology to determine which of these alternatives may be present in Pelagiidae. RESULTS: We first examined the structure and development of polyp and ephyra musculature in Chrysaora quinquecirrha, a close relative of P. noctiluca with a complex life cycle. Using phallotoxin staining and confocal microscopy, we verified that polyps have four to six cord muscles that persist in strobilae and discovered that cord muscles is physically separated from ephyra muscle. When cord muscle is removed from ephyra segments, normal ephyra muscle still develops. This suggests that polyp cord muscle is not necessary for ephyra muscle formation. We also found no evidence of polyp-like muscle in P. noctiluca. In both species, we discovered that ephyra muscle arises de novo in a similar manner, regardless of the life cycle. CONCLUSIONS: The separate origins of polyp and ephyra muscle in C. quinquecirrha and the absence of polyp-like muscle in P. noctiluca suggest that polyp muscle is not remodeled to form ephyra muscle in Pelagiidae. Life cycle stages in Scyphozoa may instead be compartmentalized. Because polyp muscle is not directly remodeled, this may have facilitated the loss of the polyp stage in the evolution of P. noctiluca.

20.
PLoS One ; 9(5): e96434, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24789338

RESUMEN

Ontologies provide an important resource to integrate information. For developmental biology and comparative anatomy studies, ontologies of a species are used to formalize and annotate data that are related to anatomical structures, their lineage and timing of development. Here, we have constructed the first ontology for anatomy and asexual development (blastogenesis) of a bilaterian, the colonial tunicate Botryllus schlosseri. Tunicates, like Botryllus schlosseri, are non-vertebrates and the only chordate taxon species that reproduce both sexually and asexually. Their tadpole larval stage possesses structures characteristic of all chordates, i.e. a notochord, a dorsal neural tube, and gill slits. Larvae settle and metamorphose into individuals that are either solitary or colonial. The latter reproduce both sexually and asexually and these two reproductive modes lead to essentially the same adult body plan. The Botryllus schlosseri Ontology of Development and Anatomy (BODA) will facilitate the comparison between both types of development. BODA uses the rules defined by the Open Biomedical Ontologies Foundry. It is based on studies that investigate the anatomy, blastogenesis and regeneration of this organism. BODA features allow the users to easily search and identify anatomical structures in the colony, to define the developmental stage, and to follow the morphogenetic events of a tissue and/or organ of interest throughout asexual development. We invite the scientific community to use this resource as a reference for the anatomy and developmental ontology of B. schlosseri and encourage recommendations for updates and improvements.


Asunto(s)
Bases de Datos Genéticas , Urocordados/anatomía & histología , Urocordados/embriología , Animales , Ontologías Biológicas , Tipificación del Cuerpo , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA