Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JMIR Res Protoc ; 10(7): e29191, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34292168

RESUMEN

BACKGROUND: Innovative analyses of cardiovascular (CV) risk markers and health behaviors linked to neighborhood stressors are essential to further elucidate the mechanisms by which adverse neighborhood social conditions lead to poor CV outcomes. We propose to objectively measure physical activity (PA), sedentary behavior, and neighborhood stress using accelerometers, GPS, and real-time perceived ecological momentary assessment via smartphone apps and to link these to biological measures in a sample of White and African American women in Washington, DC, neighborhoods. OBJECTIVE: The primary aim of this study is to test the hypothesis that living in adverse neighborhood social conditions is associated with higher stress-related neural activity among 60 healthy women living in high or low socioeconomic status neighborhoods in Washington, DC. Sub-aim 1 of this study is to test the hypothesis that the association is moderated by objectively measured PA using an accelerometer. A secondary objective is to test the hypothesis that residing in adverse neighborhood social environment conditions is related to differences in vascular function. Sub-aim 2 of this study is to test the hypothesis that the association is moderated by objectively measured PA. The third aim of this study is to test the hypothesis that adverse neighborhood social environment conditions are related to differences in immune system activation. METHODS: The proposed study will be cross-sectional, with a sample of at least 60 women (30 healthy White women and 30 healthy Black women) from Wards 3 and 5 in Washington, DC. A sample of the women (n=30) will be recruited from high-income areas in Ward 3 from census tracts within a 15% of Ward 3's range for median household income. The other participants (n=30) will be recruited from low-income areas in Wards 5 from census tracts within a 15% of Ward 5's range for median household income. Finally, participants from Wards 3 and 5 will be matched based on age, race, and BMI. Participants will wear a GPS unit and accelerometer and report their stress and mood in real time using a smartphone. We will then examine the associations between GPS-derived neighborhood variables, stress-related neural activity measures, and adverse biological markers. RESULTS: The National Institutes of Health Institutional Review Board has approved this study. Recruitment will begin in the summer of 2021. CONCLUSIONS: Findings from this research could inform the development of multilevel behavioral interventions and policies to better manage environmental factors that promote immune system activation or psychosocial stress while concurrently working to increase PA, thereby influencing CV health. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/29191.

2.
Life Sci ; 197: 30-39, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29410090

RESUMEN

Recent studies suggest that the time of day at which food is consumed dramatically influences clinically-relevant cardiometabolic parameters (e.g., adiposity, insulin sensitivity, and cardiac function). Meal feeding benefits may be the result of daily periods of feeding and/or fasting, highlighting the need for improved understanding of the temporal adaptation of cardiometabolic tissues (e.g., heart) to fasting. Such studies may provide mechanistic insight regarding how time-of-day-dependent feeding/fasting cycles influence cardiac function. We hypothesized that fasting during the sleep period elicits beneficial adaptation of the heart at transcriptional, translational, and metabolic levels. To test this hypothesis, temporal adaptation was investigated in wild-type mice fasted for 24-h, or for either the 12-h light/sleep phase or the 12-h dark/awake phase. Fasting maximally induced fatty acid responsive genes (e.g., Pdk4) during the dark/active phase; transcriptional changes were mirrored at translational (e.g., PDK4) and metabolic flux (e.g., glucose/oleate oxidation) levels. Similarly, maximal repression of myocardial p-mTOR and protein synthesis rates occurred during the dark phase; both parameters remained elevated in the heart of fasted mice during the light phase. In contrast, markers of autophagy (e.g., LC3II) exhibited peak responses to fasting during the light phase. Collectively, these data show that responsiveness of the heart to fasting is temporally partitioned. Autophagy peaks during the light/sleep phase, while repression of glucose utilization and protein synthesis is maximized during the dark/active phase. We speculate that sleep phase fasting may benefit cardiac function through augmentation of protein/cellular constituent turnover.


Asunto(s)
Adaptación Fisiológica , Autofagia , Ayuno/metabolismo , Miocardio/metabolismo , Fases del Sueño , Animales , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas Serina-Treonina Quinasas/biosíntesis , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Serina-Treonina Quinasas TOR/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA