Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 316: 121084, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37321704

RESUMEN

Bioactive polysaccharide, carboxymethyl chitosan-quercetin (CMCS-q) was prepared by a one-step reaction utilizing Schiff base chemistry. Notably, the presented conjugation method involves neither radical reactions nor auxiliary coupling agents. Physicochemical properties and bioactivity of the modified polymer were studied and compared to those of the pristine carboxymethyl chitosan, CMCS. The modified CMCS-q demonstrated antioxidant activity by TEAC assay and antifungal activity by inhibiting spore germination of plant pathogen Botrytis cynerea. Then, CMCS-q was applied as an active coating on fresh-cut apples. The treatment resulted in enhanced firmness, inhibited browning and improved microbiological quality of the food product. The presented conjugation method allows retaining antimicrobial and antioxidant activity of quercetin moiety in the modified biopolymer. This method can be further used as a platform for binding ketone/aldehyde-containing polyphenols and other natural compounds to form various bioactive polymers.


Asunto(s)
Antiinfecciosos , Quitosano , Quercetina/farmacología , Quercetina/química , Antioxidantes/farmacología , Antioxidantes/química , Quitosano/farmacología , Quitosano/química , Antiinfecciosos/farmacología , Conservación de Alimentos
2.
Foods ; 11(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35267288

RESUMEN

Broccoli sprouts are known as a rich source of health-beneficial phytonutrients: glucosinolates and phenolic compounds. The production of phytonutrients can be stimulated by elicitors that activate the plant stress response. The aim of this study was enhancing the nutritional value of broccoli sprouts using hydrogen peroxide (H2O2) as an elicitor. Daily spraying with H2O2 (500-1000 mM) enhanced the accumulation of glucosinolates, doubling their content in the cotyledons of 16/8 h photoperiod-grown 7-day sprouts compared to the water-treated controls. The application of H2O2 on dark-grown sprouts showed a smaller extent of glucosinolate stimulation than with light exposure. The treatment affected sprout morphology without reducing their yield. The H2O2-treated sprouts had shorter hypocotyls and roots, negative root tropism and enhanced root branching. The activated glucosinolate production became evident 24 h after the first H2O2 application and continued steadily until harvest. Applying the same treatment to greenhouse-grown wild rocket plants caused scattered leaf bleaching, a certain increase in glucosinolates but decline in phenolics content. The H2O2 treatment of broccoli sprouts caused a 3.5-fold upregulation of APK1, a gene related to sulfur mobilization for glucosinolate synthesis. Comparing the APK1 expression with the competing gene GSH1 using sulfur for antioxidant glutathione production indicated that glutathione synthesis prevailed in the sprouts over the formation of glucosinolates.

3.
Food Chem ; 378: 132056, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35030463

RESUMEN

A series of quaternary dimethyl-(alkyl)-ammonium chitosan derivatives (QACs) was synthesized and studied for physicochemical properties and bioactivity. The QACs tended to spontaneously self-assembly into nanoaggregates. Antimicrobial activity was examined in vitro on Gram-negative Escherichia coli (E. coli) and Gram-positive Listeria innocua (L. innocua) bacteria as well as phytopathogenic fungus Botrytis cinerea. The hexyl chain-substituted QAC-6 demonstrated the highest potency causing 3.0- and 4.5-log CFU mL-1 reduction of E. coli and L. innocua, respectively. QAC-6 was tested for antimicrobial activity on stainless steel coupons and fresh spinach leaves. A traditional 'wet' application (spray) and dry Engineered Water Nanostructure (EWNS) approach were used for spinach decontamination. With both approaches, significant reduction of microbial load on the treated produce was achieved. The wet application showed a greater reduction of microbial load, while the advantages of EWNS were reaching the antimicrobial effect with miniscule dose of active agent leaving treated surface visibly dry.


Asunto(s)
Quitosano , Escherichia coli O157 , Recuento de Colonia Microbiana , Microbiología de Alimentos , Hojas de la Planta , Verduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA