Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Nat Immunol ; 24(8): 1295-1307, 2023 08.
Article En | MEDLINE | ID: mdl-37474652

The transcription factor ThPOK (encoded by Zbtb7b) is well known for its role as a master regulator of CD4 lineage commitment in the thymus. Here, we report an unexpected and critical role of ThPOK as a multifaceted regulator of myeloid lineage commitment, differentiation and maturation. Using reporter and knockout mouse models combined with single-cell RNA-sequencing, progenitor transfer and colony assays, we show that ThPOK controls monocyte-dendritic cell versus granulocyte lineage production during homeostatic differentiation, and serves as a brake for neutrophil maturation in granulocyte lineage-specified cells through transcriptional regulation of lineage-specific transcription factors and RNA via altered messenger RNA splicing to reprogram intron retention.


Gene Expression Regulation , Thymus Gland , Animals , Mice , Cell Differentiation , Cell Lineage , DNA-Binding Proteins , Mice, Knockout , RNA , Transcription Factors/genetics , CD4 Antigens
2.
Cancer Discov ; 12(8): 1960-1983, 2022 08 05.
Article En | MEDLINE | ID: mdl-35723626

Although inflammatory mechanisms driving hepatocellular carcinoma (HCC) have been proposed, the regulators of anticancer immunity in HCC remain poorly understood. We found that IL27 receptor (IL27R) signaling promotes HCC development in vivo. High IL27EBI3 cytokine or IL27RA expression correlated with poor prognosis for patients with HCC. Loss of IL27R suppressed HCC in vivo in two different models of hepatocarcinogenesis. Mechanistically, IL27R sig-naling within the tumor microenvironment restrains the cytotoxicity of innate cytotoxic lymphocytes. IL27R ablation enhanced their accumulation and activation, whereas depletion or functional impairment of innate cytotoxic cells abrogated the effect of IL27R disruption. Pharmacologic neutralization of IL27 signaling increased infiltration of innate cytotoxic lymphocytes with upregulated cytotoxic molecules and reduced HCC development. Our data reveal an unexpected role of IL27R signaling as an immunologic checkpoint regulating innate cytotoxic lymphocytes and promoting HCC of different etiologies, thus indicating a therapeutic potential for IL27 pathway blockade in HCC. SIGNIFICANCE: HCC, the most common form of liver cancer, is characterized by a poor survival rate and limited treatment options. The discovery of a novel IL27-dependent mechanism controlling anticancer cytotoxic immune response will pave the road for new treatment options for this devastating disease. This article is highlighted in the In This Issue feature, p. 1825.


Antineoplastic Agents , Carcinoma, Hepatocellular , Interleukin-27 , Liver Neoplasms , T-Lymphocytes, Cytotoxic , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/immunology , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Interleukin-27/immunology , Interleukins/immunology , Liver Neoplasms/immunology , Prognosis , Receptors, Interleukin/immunology , Signal Transduction , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment/immunology
3.
Nat Commun ; 10(1): 5046, 2019 11 06.
Article En | MEDLINE | ID: mdl-31695038

Abdominal aortic aneurysm (AAA) is a prevalent life-threatening disease, where aortic wall degradation is mediated by accumulated immune cells. Although cytokines regulate inflammation within the aorta, their contribution to AAA via distant alterations, particularly in the control of hematopoietic stem cell (HSC) differentiation, remains poorly defined. Here we report a pathogenic role for the interleukin-27 receptor (IL-27R) in AAA, as genetic ablation of IL-27R protects mice from the disease development. Mitigation of AAA is associated with a blunted accumulation of myeloid cells in the aorta due to the attenuation of Angiotensin II (Ang II)-induced HSC expansion. IL-27R signaling is required to induce transcriptional programming to overcome HSC quiescence and increase differentiation and output of mature myeloid cells in response to stress stimuli to promote their accumulation in the diseased aorta. Overall, our studies illuminate how a prominent vascular disease can be distantly driven by a cytokine-dependent regulation of bone marrow precursors.


Aortic Aneurysm, Abdominal/metabolism , Interleukin-27/metabolism , Myelopoiesis/physiology , Receptors, Interleukin/metabolism , Aneurysm/metabolism , Angiotensin II/metabolism , Animals , Aorta/pathology , Aortic Aneurysm, Abdominal/pathology , Blood Pressure , Cell Differentiation , Cytokines/metabolism , Disease Models, Animal , Female , Hematopoietic Stem Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Knockout, ApoE , Myeloid Cells/pathology , Receptors, Interleukin/genetics , Signal Transduction
...