Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 9865, 2023 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-37332070

RESUMEN

The landscape of current cancer immunotherapy is dominated by antibodies targeting PD-1/PD-L1 and CTLA-4 that have transformed cancer therapy, yet their efficacy is limited by primary and acquired resistance. The blockade of additional immune checkpoints, especially TIGIT and LAG-3, has been extensively explored, but so far only a LAG-3 antibody has been approved for combination with nivolumab to treat unresectable or metastatic melanoma. Here we report the development of a PDL1 × TIGIT bi-specific antibody (bsAb) GB265, a PDL1 × LAG3 bsAb GB266, and a PDL1 × TIGIT × LAG3 tri-specific antibody (tsAb) GB266T, all with intact Fc function. In in vitro cell-based assays, these antibodies promote greater T cell expansion and tumor cell killing than benchmark antibodies and antibody combinations in an Fc-dependent manner, likely by facilitating T cell interactions (bridging) with cancer cells and monocytes, in addition to blocking immune checkpoints. In animal models, GB265 and GB266T antibodies outperformed benchmarks in tumor suppression. This study demonstrates the potential of a new generation of multispecific checkpoint inhibitors to overcome resistance to current monospecific checkpoint antibodies or their combinations for the treatment of human cancers.


Asunto(s)
Melanoma , Neoplasias , Animales , Humanos , Neoplasias/terapia , Nivolumab , Receptores Inmunológicos , Inmunoterapia , Linfocitos T
2.
Sci Rep ; 12(1): 4163, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264679

RESUMEN

SARS-CoV-2 and its variants have persisted in this ongoing COVID-19 pandemic. While the vaccines have greatly reduced the COVID-19 cases, hospitalizations, and death, about half of the world remain unvaccinated due to various reasons. Furthermore, the duration of the immunity gained from COVID-19 vaccination is still unclear. Therefore, there is a need for innovative prophylactic and treatment measures. In response to this need, we previously reported on the successful computer-aided development of potent VHH-based multispecific antibodies that were characterized in vitro. Here, we evaluated in vivo efficacy and safety of the lead trispecific VHH-Fc, ABS-VIR-001. Importantly, our data showed that ABS-VIR-001 treatment prevented SARS-CoV-2 infection and death when provided as an intranasal prophylaxis in a humanized ACE-2 mouse model. In addition, ABS-VIR-001 post-exposure treatment was shown to greatly reduce viral loads by as much as 50-fold. A detailed panel of metabolic and cellular parameters demonstrated that ABS-VIR-001 treatment was overall comparable to the PBS treatment, indicating a favorable safety profile. Notably, our inhibition studies show that ABS-VIR-001 continued to demonstrate unwavering efficacy against SARS-CoV-2 mutants, associated with key variants including Delta and Omicron, owing to its multiple epitope design. Lastly, we rigorously tested and confirmed the excellent thermostability of ABS-VIR-001 when heated to 45 °C for up to 4 weeks. Taken together, our study suggests that ABS-VIR-001 is an efficacious and durable prophylaxis and post-exposure treatment for COVID-19 with promising safety and manufacturability features for global distribution.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/fisiología , Anticuerpos de Dominio Único/uso terapéutico , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Reacciones Antígeno-Anticuerpo/efectos de los fármacos , Biomarcadores/metabolismo , COVID-19/virología , Estabilidad de Medicamentos , Humanos , Huésped Inmunocomprometido , Ratones , Ratones Transgénicos , SARS-CoV-2/aislamiento & purificación , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacología , Glicoproteína de la Espiga del Coronavirus/inmunología , Carga Viral
3.
Antib Ther ; 4(4): 228-241, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34805746

RESUMEN

BACKGROUND: Bispecific T cell engaging antibodies (TEAs) with one arm targeting a cancer antigen and another arm binding to CD3 have demonstrated impressive efficacy in multiple clinical studies. However, establishing a safety/efficacy balance remains challenging. For instance, some TEAs have severe safety issues. Additionally, not all patients or all cancer cells of one patient respond equally to TEAs. METHODS: Here, we developed a next-generation bispecific TEA with better safety/efficacy balance and expanded mechanisms of action. Using the computer-aided antibody design strategy, we replaced heavy chain complementarity-determining regions (HCDRs) in one Rituximab arm with HCDRs from a CD3 antibody and generated a novel CD20/CD3 bispecific antibody. RESULTS: After series of computer-aided sequence optimization, the lead molecule, GB261, showed great safety/efficacy balance both in vitro and in animal studies. GB261 exhibited high affinity to CD20 and ultra-low affinity to CD3. It showed comparable T cell activation and reduced cytokine secretion compared with a benchmark antibody (BM). ADCC and CDC caused by GB261 only killed CD20+ cells but not CD3+ cells. It exhibited better RRCL cell killing than the BM in a PBMC-engrafted, therapeutic treatment mouse model and good safety in cynomolgus monkeys. CONCLUSIONS: Thus, GB261 is a promising novel TEA against CD20+ cancers.

5.
Sci Rep ; 10(1): 17806, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082473

RESUMEN

SARS-CoV-2 is a newly emergent coronavirus, which has adversely impacted human health and has led to the COVID-19 pandemic. There is an unmet need to develop therapies against SARS-CoV-2 due to its severity and lack of treatment options. A promising approach to combat COVID-19 is through the neutralization of SARS-CoV-2 by therapeutic antibodies. Previously, we described a strategy to rapidly identify and generate llama nanobodies (VHH) from naïve and synthetic humanized VHH phage libraries that specifically bind the S1 SARS-CoV-2 spike protein, and block the interaction with the human ACE2 receptor. In this study we used computer-aided design to construct multi-specific VHH antibodies fused to human IgG1 Fc domains based on the epitope predictions for leading VHHs. The resulting tri-specific VHH-Fc antibodies show more potent S1 binding, S1/ACE2 blocking, and SARS-CoV-2 pseudovirus neutralization than the bi-specific VHH-Fcs or combination of individual monoclonal VHH-Fcs. Furthermore, protein stability analysis of the VHH-Fcs shows favorable developability features, which enable them to be quickly and successfully developed into therapeutics against COVID-19.


Asunto(s)
Betacoronavirus/metabolismo , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Reacciones Antígeno-Anticuerpo , Betacoronavirus/aislamiento & purificación , Sitios de Unión , COVID-19 , Línea Celular , Diseño Asistido por Computadora , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Epítopos/química , Epítopos/inmunología , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/metabolismo , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Pruebas de Neutralización , Pandemias , Biblioteca de Péptidos , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/patología , Neumonía Viral/virología , Estabilidad Proteica , SARS-CoV-2 , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
6.
Emerg Microbes Infect ; 9(1): 1034-1036, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32403995

RESUMEN

Coronaviruses cause severe human viral diseases including SARS, MERS and COVID-19. Most recently SARS-CoV-2 virus (causing COVID-19) has led to a pandemic with no successful therapeutics. The SARS-CoV-2 infection relies on trimeric spike (S) proteins to facilitate virus entry into host cells by binding to ACE2 receptor on host cell membranes. Therefore, blocking this interaction with antibodies are promising agents against SARS-CoV-2. Here we describe using humanized llama antibody VHHs against SARS-CoV-2 that would overcome the limitations associated with polyclonal and monoclonal combination therapies. From two llama VHH libraries, unique humanized VHHs that bind to S protein and block the S/ACE2 interaction were identified. Furthermore, pairwise combination of VHHs showed synergistic blocking. Multi-specific antibodies with enhanced affinity and avidity, and improved S/ACE2 blocking are currently being developed using an in-silico approach that also fuses VHHs to Fc domains. Importantly, our current bi-specific antibody shows potent S/ACE2 blocking (KD - 0.25 nM, IC100 ∼ 36.7 nM, IC95 ∼ 12.2 nM, IC50 ∼ 1 nM) which is significantly better than individual monoclonal VHH-Fcs. Overall, this design would equip the VHH-Fcs multiple mechanisms of actions against SARS-CoV-2. Thus, we aim to contribute to the battle against COVID-19 by developing therapeutic antibodies as well as diagnostics.


Asunto(s)
Antagonistas de Receptores de Angiotensina/inmunología , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Camélidos del Nuevo Mundo/inmunología , Peptidil-Dipeptidasa A/inmunología , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Biespecíficos/inmunología , Humanos , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología
7.
PLoS One ; 15(4): e0230711, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32240193

RESUMEN

Vaccinia virus (VACV) has been used extensively as the vaccine against smallpox and as a viral vector for the development of recombinant vaccines and cancer therapies. Replication-competent, non-attenuated VACVs induce strong, long-lived humoral and cell-mediated immune responses and can be effective oncolytic vectors. However, complications from uncontrolled VACV replication in vaccinees and their close contacts can be severe, particularly in individuals with predisposing conditions. In an effort to develop replication-competent VACV vectors with improved safety, we placed VACV late genes encoding core or virion morphogenesis proteins under the control of tet operon elements to regulate their expression with tetracycline antibiotics. These replication-inducible VACVs would only express the selected genes in the presence of tetracyclines. VACVs inducibly expressing the A3L or A6L genes replicated indistinguishably from wild-type VACV in the presence of tetracyclines, whereas there was no evidence of replication in the absence of antibiotics. These outcomes were reflected in mice, where the VACV inducibly expressing the A6L gene caused weight loss and mortality equivalent to wild-type VACV in the presence of tetracyclines. In the absence of tetracyclines, mice were protected from weight loss and mortality, and viral replication was not detected. These findings indicate that replication-inducible VACVs based on the conditional expression of the A3L or A6L genes can be used for the development of safer, next-generation live VACV vectors and vaccines. The design allows for administration of replication-inducible VACV in the absence of tetracyclines (as a replication-defective vector) or in the presence of tetracyclines (as a replication-competent vector) with enhanced safety.


Asunto(s)
Vectores Genéticos/administración & dosificación , Tetraciclinas/farmacología , Virus Vaccinia/crecimiento & desarrollo , Vaccinia/prevención & control , Virión/crecimiento & desarrollo , Replicación Viral , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Vacunas Sintéticas/administración & dosificación , Vaccinia/genética , Vaccinia/virología , Virus Vaccinia/efectos de los fármacos , Virus Vaccinia/genética , Proteínas Virales/genética , Virión/efectos de los fármacos
8.
Virus Res ; 181: 43-52, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24394294

RESUMEN

The use of vaccinia virus (VACV) as the vaccine against variola virus resulted in the eradication of smallpox. VACV has since been used in the development of recombinant vaccine and therapeutic vectors, but complications associated with uncontrolled viral replication have constrained its use as a live viral vector. We propose to improve the safety of VACV as a live-replicating vector by using elements of the tet operon to control the transcription of genes that are essential for viral growth. Poxviruses encode all enzymes and factors necessary for their replication within the host cell cytoplasm. One essential VACV factor is the vaccinia early transcription factor (VETF) packaged into the viral core. This heterodimeric protein is required for expression of early VACV genes. VETF is composed of a large subunit encoded by the A7L gene and a small subunit encoded by the D6R gene. Two recombinant VACVs were generated in which either the A7L or D6R gene was placed under the control of tet operon elements to allow their transcription, and therefore viral replication, to be dependent on tetracycline antibiotics such as doxycycline. In the absence of inducers, no plaques were produced but abortively infected cells could be identified by expression of a reporter gene. In the presence of doxycycline, both recombinant viruses replicated indistinguishably from the wild-type strain. This stringent control of VACV replication can be used for the development of safer, next-generation VACV vaccines and therapeutic vectors. Such replication-inducible VACVs would only replicate when administered with tetracycline antibiotics, and if adverse events were to occur, treatment would be as simple as antibiotic cessation.


Asunto(s)
Antibacterianos/farmacología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Factores de Transcripción/genética , Virus Vaccinia/efectos de los fármacos , Virus Vaccinia/fisiología , Proteínas Virales/genética , Replicación Viral/efectos de los fármacos , Replicación Viral/genética , Animales , Línea Celular , Células Cultivadas , Chlorocebus aethiops , Orden Génico , Vectores Genéticos/genética , Genoma Viral , Humanos , Regiones Promotoras Genéticas , Tetraciclina/farmacología , Ensayo de Placa Viral
9.
Proc Natl Acad Sci U S A ; 110(38): 15407-12, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23988330

RESUMEN

Replication-competent viruses, such as Vaccinia virus (VACV), are powerful tools for the development of oncolytic viral therapies and elicit superior immune responses when used as vaccine and immunotherapeutic vectors. However, severe complications from uncontrolled viral replication can occur, particularly in immunocompromised individuals or in those with other predisposing conditions. VACVs constitutively expressing interferon-γ (IFN-γ) replicate in cell culture indistinguishably from control viruses; however, they replicate in vivo to low or undetectable levels, and are rapidly cleared even in immunodeficient animals. In an effort to develop safe and highly effective replication-competent VACV vectors, we established a system to inducibly express IFN-γ. Our SMART (safety mechanism assisted by the repressor of tetracycline) vectors are designed to express the tetracycline repressor under a constitutive VACV promoter and IFN-γ under engineered tetracycline-inducible promoters. Immunodeficient SCID mice inoculated with VACVs not expressing IFN-γ demonstrated severe weight loss, whereas those given VACVs expressing IFN-γ under constitutive VACV promoters showed no signs of infection. Most importantly, mice inoculated with a VACV expressing the IFN-γ gene under an inducible promoter remained healthy in the presence of doxycycline, but exhibited severe weight loss in the absence of doxycycline. In this study, we developed a safety mechanism for VACV based on the conditional expression of IFN-γ under a tightly controlled tetracycline-inducible VACV promoter for use in vaccines and oncolytic cancer therapies.


Asunto(s)
Regulación Viral de la Expresión Génica/efectos de los fármacos , Vectores Genéticos , Interferón gamma/metabolismo , Seguridad del Paciente/normas , Regiones Promotoras Genéticas/efectos de los fármacos , Tetraciclina/farmacología , Virus Vaccinia , Animales , Línea Celular , Portadores de Fármacos/normas , Ensayo de Inmunoadsorción Enzimática , Humanos , Ratones , Ratones SCID , Microscopía Fluorescente , Regiones Promotoras Genéticas/genética , Vacunas/normas
10.
Hum Vaccin Immunother ; 8(7): 961-70, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22777090

RESUMEN

In 1796, Edward Jenner introduced the concept of vaccination with cowpox virus, an Orthopoxvirus within the family Poxviridae that elicits cross protective immunity against related orthopoxviruses, including smallpox virus (variola virus). Over time, vaccinia virus (VACV) replaced cowpox virus as the smallpox vaccine, and vaccination efforts eventually led to the successful global eradication of smallpox in 1979. VACV has many characteristics that make it an excellent vaccine and that were crucial for the successful eradication of smallpox, including (1) its exceptional thermal stability (a very important but uncommon characteristic in live vaccines), (2) its ability to elicit strong humoral and cell-mediated immune responses, (3) the fact that it is easy to propagate, and (4) that it is not oncogenic, given that VACV replication occurs exclusively within the host cell cytoplasm and there is no evidence that the viral genome integrates into the host genome. Since the eradication of smallpox, VACV has experienced a renaissance of interest as a viral vector for the development of recombinant vaccines, immunotherapies, and oncolytic therapies, as well as the development of next-generation smallpox vaccines. This revival is mainly due to the successful use and extensive characterization of VACV as a vaccine during the smallpox eradication campaign, along with the ability to genetically manipulate its large dsDNA genome while retaining infectivity and immunogenicity, its wide mammalian host range, and its natural tropism for tumor cells that allows its use as an oncolytic vector. This review provides an overview of new uses of VACV that are currently being explored for the development of vaccines, immunotherapeutics, and oncolytic virotherapies.


Asunto(s)
Portadores de Fármacos , Vectores Genéticos , Virus Vaccinia/inmunología , Vacunas Virales/inmunología , Especificidad del Huésped , Humanos , Virus Oncolíticos/genética , Virus Oncolíticos/crecimiento & desarrollo , Virus Oncolíticos/inmunología , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Virus Vaccinia/genética , Virus Vaccinia/fisiología , Vacunas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA