Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Pharm ; 21(1): 143-151, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38126776

RESUMEN

Single-stranded antisense oligonucleotides (ASOs) are typically administered subcutaneously once per week or monthly. Less frequent dosing would have strong potential to improve patient convenience and increase adherence and thereby for some diseases result in more optimal therapeutic outcomes. Several technologies are available to provide sustained drug release via subcutaneous (SC) administration. ASOs have a high aqueous solubility and require relatively high doses, which limits the options available substantially. In the present work, we show that an innovative biodegradable, nonporous silica-based matrix provides zero-order release in vivo (rats) for at least 4 weeks for compositions with ASO loads of up to about 100 mg/mL (0.5 mL injection) without any sign of initial burst. This implies that administration beyond once monthly can be feasible. For higher drug loads, substantial burst release was observed during the first week. The concentrations of unconjugated ASO levels in the liver were found to be comparable to corresponding bolus doses. Additionally, infusion using a minipump shows a higher liver exposure than SC bolus administration at the same dose level and, in addition, clear mRNA knockdown and circulating protein reduction comparable to SC bolus dosing, hence suggesting productive liver uptake for a slow-release administration.


Asunto(s)
Hígado , Oligonucleótidos Antisentido , Humanos , Ratas , Animales , Hígado/metabolismo , Inyecciones
2.
Nucleic Acid Ther ; 33(3): 159-177, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36787481

RESUMEN

A primary function of the parenteral drug product manufacturing process is to ensure sterility of the final product. The two most common methods for sterilizing parenteral drug products are terminal sterilization (TS), whereby the drug product is sterilized in the final container following filling and finish, and membrane sterilization, whereby the product stream is sterilized by membrane filtration and filled into presterilized containers in an aseptic processing environment. Although TS provides greater sterility assurance than membrane sterilization and aseptic processing, not all drug products are amenable to TS processes, which typically involve heat treatment or exposure to ionizing radiation. Oligonucleotides represent an emerging class of therapeutics with great potential for treating a broad range of indications, including previously undruggable targets. Owing to their size, structural complexity, and relative lack of governing regulations, several challenges in drug development are unique to oligonucleotides. This exceptionality justifies a focused assessment of traditional chemistry, manufacturing, and control strategies before their adoption. In this article, we review the current state of sterile oligonucleotide drug product processing, highlight the key aspects to consider when assessing options for product sterilization, and provide recommendations to aid in the successful evaluation and development of TS processes. We also explore current regulatory expectations and provide our interpretation as it pertains to oligonucleotide drug products.


Asunto(s)
Oligonucleótidos , Preparaciones Farmacéuticas , Esterilización , Esterilización/métodos , Oligonucleótidos/farmacología , Preparaciones Farmacéuticas/normas
3.
Sci Transl Med ; 13(593)2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980578

RESUMEN

Inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9) reduce low-density lipoprotein (LDL) cholesterol and are used for treatment of dyslipidemia. Current PCSK9 inhibitors are administered via subcutaneous injection. We present a highly potent, chemically modified PCSK9 antisense oligonucleotide (ASO) with potential for oral delivery. Past attempts at oral delivery using earlier-generation ASO chemistries and transient permeation enhancers provided encouraging data, suggesting that improving potency of the ASO could make oral delivery a reality. The constrained ethyl chemistry and liver targeting enabled by N-acetylgalactosamine conjugation make this ASO highly potent. A single subcutaneous dose of 90 mg reduced PCSK9 by >90% in humans with elevated LDL cholesterol and a monthly subcutaneous dose of around 25 mg is predicted to reduce PCSK9 by 80% at steady state. To investigate the feasibility of oral administration, the ASO was coformulated in a tablet with sodium caprate as permeation enhancer. Repeated oral daily dosing in dogs resulted in a bioavailability of 7% in the liver (target organ), about fivefold greater than the plasma bioavailability. Target engagement after oral administration was confirmed by intrajejunal administration of a rat-specific surrogate ASO in solution with the enhancer to rats and by plasma PCSK9 and LDL cholesterol lowering in cynomolgus monkey after tablet administration. On the basis of an assumption of 5% liver bioavailability after oral administration in humans, a daily dose of 15 mg is predicted to reduce circulating PCSK9 by 80% at steady state, supporting the development of the compound for oral administration to treat dyslipidemia.


Asunto(s)
Oligonucleótidos Antisentido , Inhibidores de PCSK9 , Animales , Perros , Macaca fascicularis , Ratas , Serina Endopeptidasas
4.
Ther Innov Regul Sci ; 52(6): 687-688, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30149734

RESUMEN

A consortium of seven pharma companies has been formed with the aim of sharing knowledge on and harmonizing approaches to oligonucleotide development. This letter aims to raise awareness of this new group and to set expectations for future publications.


Asunto(s)
Conducta Cooperativa , Industria Farmacéutica , Cooperación Internacional , Oligonucleótidos , Europa (Continente) , Difusión de la Información
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA