Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 105(2-1): 024103, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35291141

RESUMEN

The two-dimensional Loewner exploration process is generalized to the case where the random force is self-similar with positively correlated increments. We model this random force by a fractional Brownian motion with Hurst exponent H≥1/2≡H_{BM}, where H_{BM} stands for the one-dimensional Brownian motion. By manipulating the deterministic force, we design a scale-invariant equation describing self-similar traces which lack conformal invariance. The model is investigated in terms of the "input diffusivity parameter" κ, which coincides with the one of the ordinary Schramm-Loewner evolution (SLE) at H=H_{BM}. In our numerical investigation, we focus on the scaling properties of the traces generated for κ=2,3, κ=4, and κ=6,8 as the representatives, respectively, of the dilute phase, the transition point, and the dense phase of the ordinary SLE. The resulting traces are shown to be scale invariant. Using two equivalent schemes, we extract the fractal dimension, D_{f}(H), of the traces which decrease monotonically with increasing H, reaching D_{f}=1 at H=1 for all κ values. The left passage probability (LPP) test demonstrates that, for H values not far from the uncorrelated case (small ε_{H}≡H-H_{BM}/H_{BM}), the prediction of the ordinary SLE is applicable with an effective diffusivity parameter κ_{eff}. Not surprisingly, the κ_{eff}'s do not fulfill the prediction of SLE for the relation between D_{f}(H) and the diffusivity parameter.

2.
Phys Rev E ; 104(6-1): 064119, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35030889

RESUMEN

In the original invasion percolation model, a random number quantifies the role of necks, or generally the quality of pores, ignoring the structure of pores and impermeable regions (to which the invader cannot enter). In this paper, we investigate invasion percolation (IP), taking into account the impermeable regions, the configuration of which is modeled by ordinary and Ising-correlated site percolation (with short-range interactions, SRI), on top of which the IP dynamics is defined. We model the long-ranged correlations of pores by a random Coulomb potential (RCP). By examining various dynamical observables, we suggest that the critical exponents of Ising-correlated cases change considerably only in the vicinity of the critical point (critical temperature), while for the ordinary percolation case the exponents are robust against the occupancy parameter p. The properties of the model for the long-range interactions [LRI (RCP)] are completely different from the normal IP. In particular, the fractal dimension of the external frontier of the largest hole is nearly 4/3 for SRI far from the critical points, which is compatible with normal IP, while it converges to 1.099±0.04 for RCP. For the latter case, the time dependence of our observables is divided into three parts: the power law (short time), the logarithmic (moderate time), and the linear (long time) regimes. The second crossover time is shown to go to infinity in the thermodynamic limit, whereas the first crossover time is nearly unchanged, signaling the dominance of the logarithmic regime. The average gyration radius of the growing clusters, the length of their external perimeter, and the corresponding roughness are shown to be nearly constant for the long-time regime in the thermodynamic limit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...