Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Inorg Chem ; 62(31): 12203-12212, 2023 Aug 07.
Article En | MEDLINE | ID: mdl-37487202

The MSb2 compounds with M = Cr, Fe, Ru, and Os have been investigated under high pressures by synchrotron powder X-ray diffraction. All compounds, except CrSb2, were found to retain the marcasite structure up to the highest pressures (more than 50 GPa). In contrast, we found that CrSb2 has a structural phase transition around 10 GPa to a metastable, MoP2-type structure with Cr coordinated to seven Sb atoms. In addition, we compared ambient temperature compression with laser-heating experiments and found that laser-heating at pressures below and above this phase transition results in the known CuAl2-type structure. Density functional theory calculations show that this tetragonal structure is the most stable in the whole pressure interval. However, a crossing of the marcasite's and MoP2-like structure's enthalpies occurs between 5 and 7.5 GPa, which is in good agreement with the experimental data. The phase transition to the MoP2-type structure observed in this work opens up for discovering other compounds with this new transition pathway from the marcasite structure.

2.
Sci Rep ; 12(1): 13946, 2022 Aug 17.
Article En | MEDLINE | ID: mdl-35977985

Silicate and oxide glasses are often chemically doped with a variety of cations to tune for desirable properties in technological applications, but their performances are often limited by relatively lower mechanical and elastic properties. Finding a new route to synthesize silica-based glasses with high elastic and mechanical properties needs to be explored. Here, we report a dense SiO2-glass with ultra-high elastic moduli using sound velocity measurements by Brillouin scattering up to 72 GPa at 300 K. High-temperature measurements were performed up to 63 GPa at 750 K and 59 GPa at 1000 K. Compared to compression at 300 K, elevated temperature helps compressed SiO2-glass effectively overcome the kinetic barrier to undergo permanent densification with enhanced coordination number and connectivity. This hot compressed SiO2-glass exhibits a substantially high bulk modulus of 361-429 GPa which is at least 2-3 times greater than the metallic, oxide, and silicate glasses at ambient conditions. Its Poisson's ratio, an indicator for the packing efficiency, is comparable to the metallic glasses. Even after temperature quench and decompression to ambient conditions, the SiO2-glass retains some of its unique properties at compression and possesses a Poisson's ratio of 0.248(11). In addition to chemical alternatives in glass syntheses, coupled compression and heating treatments can be an effective means to enhance mechanical and elastic properties in high-performance glasses.

3.
Materials (Basel) ; 14(13)2021 Jul 01.
Article En | MEDLINE | ID: mdl-34279253

Simultaneous high-pressure Brillouin spectroscopy and powder X-ray diffraction of cerium dioxide powders are presented at room temperature to a pressure of 45 GPa. Micro- and nanocrystalline powders are studied and the density, acoustic velocities and elastic moduli determined. In contrast to recent reports of anomalous compressibility and strength in nanocrystalline cerium dioxide, the acoustic velocities are found to be insensitive to grain size and enhanced strength is not observed in nanocrystalline CeO2. Discrepancies in the bulk moduli derived from Brillouin and powder X-ray diffraction studies suggest that the properties of CeO2 are sensitive to the hydrostaticity of its environment. Our Brillouin data give the shear modulus, G0 = 63 (3) GPa, and adiabatic bulk modulus, KS0 = 142 (9) GPa, which is considerably lower than the isothermal bulk modulus, KT0∼ 230 GPa, determined by high-pressure X-ray diffraction experiments.

4.
Sci Rep ; 10(1): 6278, 2020 Apr 14.
Article En | MEDLINE | ID: mdl-32286425

Synthetic Mg2TiO4 qandilite was investigated to 50 and 40.4 GPa at room temperature using Raman spectroscopy and X-ray diffraction, respectively. The Raman measurements showed that cubic Mg2TiO4 spinel transforms to a high pressure tetragonal (I41/amd, No.141) phase at 14.7 GPa. Owing to sluggish kinetics at room temperature, the spinel phase coexists with the tetragonal phase between 14.7 and 24.3 GPa. In the X-ray diffraction experiment, transformation of the cubic Mg2TiO4 to the tetragonal structure was complete by 29.2 GPa, ~5 GPa higher than the transition pressure obtained by Raman measurements, owing to slow kinetics. The obtained isothermal bulk modulus of Mg2TiO4 spinel is KT0 = 148(3) GPa when KT0' = 6.6, or KT0 = 166(1) GPa when KT0' is fixed at 4. The isothermal bulk modulus of the high-pressure tetragonal phase is calculated to be 209(2) GPa and V0 = 270(2) Å3 when KT0' is fixed at 4, and the volume reduction on change from cubic to tetragonal phase is about 9%. The calculated thermal Grüneisen parameters (γth) of cubic and tetragonal Mg2TiO4 phases are 1.01 and 0.63. Based on the radii ratio of spinel cations, a simple model is proposed to predict post-spinel structures.

5.
Proc Natl Acad Sci U S A ; 117(18): 9747-9754, 2020 May 05.
Article En | MEDLINE | ID: mdl-32312811

Sub-Neptunes are common among the discovered exoplanets. However, lack of knowledge on the state of matter in [Formula: see text]O-rich setting at high pressures and temperatures ([Formula: see text]) places important limitations on our understanding of this planet type. We have conducted experiments for reactions between [Formula: see text] and [Formula: see text]O as archetypal materials for rock and ice, respectively, at high [Formula: see text] We found anomalously expanded volumes of dense silica (up to 4%) recovered from hydrothermal synthesis above ∼24 GPa where the [Formula: see text]-type (Ct) structure appears at lower pressures than in the anhydrous system. Infrared spectroscopy identified strong OH modes from the dense silica samples. Both previous experiments and our density functional theory calculations support up to 0.48 hydrogen atoms per formula unit of ([Formula: see text])[Formula: see text] At pressures above 60 GPa, [Formula: see text]O further changes the structural behavior of silica, stabilizing a niccolite-type structure, which is unquenchable. From unit-cell volume and phase equilibrium considerations, we infer that the niccolite-type phase may contain H with an amount at least comparable with or higher than that of the Ct phase. Our results suggest that the phases containing both hydrogen and lithophile elements could be the dominant materials in the interiors of water-rich planets. Even for fully layered cases, the large mutual solubility could make the boundary between rock and ice layers fuzzy. Therefore, the physical properties of the new phases that we report here would be important for understanding dynamics, geochemical cycle, and dynamo generation in water-rich planets.

6.
Phys Chem Chem Phys ; 20(9): 6187-6197, 2018 Feb 28.
Article En | MEDLINE | ID: mdl-29431823

The effects of swift heavy ion irradiation-induced disordering on the behavior of lanthanide zirconate compounds (Ln2Zr2O7 where Ln = Sm, Er, or Nd) at high pressures are investigated. After irradiation with 2.2 GeV 197Au ions, the initial ordered pyrochlore structure (Fd3[combining macron]m) transformed to a defect-fluorite structure (Fm3[combining macron]m) in Sm2Zr2O7 and Nd2Zr2O7. For irradiated Er2Zr2O7, which has a defect-fluorite structure, ion irradiation induces local disordering by introducing Frenkel defects despite retention of the initial structure. When subjected to high pressures (>29 GPa) in the absence of irradiation, all of these compounds transform to a cotunnite-like (Pnma) phase, followed by sluggish amorphization with further compression. However, if these compounds are irradiated prior to compression, the high pressure cotunnite-like phase is not formed. Rather, they transform directly from their post-irradiation defect-fluorite structure to an amorphous structure upon compression (>25 GPa). Defects and disordering induced by swift heavy ion irradiation alter the transformation pathways by raising the energetic barriers for the transformation to the high pressure cotunnite-like phase, rendering it inaccessible. As a result, the high pressure stability field of the amorphous phase is expanded to lower pressures when irradiation is coupled with compression. The responses of materials in the lanthanide zirconate system to irradiation and compression, both individually and in tandem, are strongly influenced by the specific lanthanide composition, which governs the defect energetics at extreme conditions.

7.
Inorg Chem ; 57(4): 2269-2277, 2018 Feb 19.
Article En | MEDLINE | ID: mdl-29420026

The structural evolution of lanthanide A2TiO5 (A = Dy, Gd, Yb, Er) at high pressure is investigated using synchrotron X-ray diffraction. The effects of A-site cation size and of the initial structure are systematically examined by varying the composition of the isostructural lanthanide titanates and the structure of dysprosium titanate polymorphs (orthorhombic, hexagonal, and cubic), respectively. All samples undergo irreversible high-pressure phase transformations, but with different onset pressures depending on the initial structure. While each individual phase exhibits different phase transformation histories, all samples commonly experience a sluggish transformation to a defect cotunnite-like (Pnma) phase for a certain pressure range. Orthorhombic Dy2TiO5 and Gd2TiO5 form P21am at pressures below 9 GPa and Pnma above 13 GPa. Pyrochlore-type Dy2TiO5 and Er2TiO5 as well as defect-fluorite-type Yb2TiO5 form Pnma at ∼21 GPa, followed by Im3̅m. Hexagonal Dy2TiO5 forms Pnma directly, although a small amount of remnants of hexagonal Dy2TiO5 is observed even at the highest pressure (∼55 GPa) reached, indicating kinetic limitations in the hexagonal Dy2TiO5 phase transformations at high pressure. Decompression of these materials leads to different metastable phases. Most interestingly, a high-pressure cubic X-type phase (Im3̅m) is confirmed using high-resolution transmission electron microscopy on recovered pyrochlore-type Er2TiO5. The kinetic constraints on this metastable phase yield a mixture of both the X-type phase and amorphous domains upon pressure release. This is the first observation of an X-type phase for an A2BO5 composition at high pressure.

8.
Sci Rep ; 7: 42921, 2017 02 24.
Article En | MEDLINE | ID: mdl-28233808

Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh's modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50-3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials.

9.
Sci Rep ; 5: 15850, 2015 Nov 05.
Article En | MEDLINE | ID: mdl-26537668

Supercritical fluids play a significant role in elucidating fundamental aspects of liquid matter under extreme conditions. They have been extensively studied at pressures and temperatures relevant to various industrial applications. However, much less is known about the structural behaviour of supercritical fluids and no structural crossovers have been observed in static compression experiments in any temperature and pressure ranges beyond the critical point. The structure of supercritical state is currently perceived to be uniform everywhere on the pressure-temperature phase diagram, and to change only in a monotonic way even moving around the critical point, not only along isotherms or isobars. Conversely, we observe structural crossovers for the first time in a deeply supercritical sample through diffraction measurements in a diamond anvil cell and discover a new thermodynamic boundary on the pressure-temperature diagram. We explain the existence of these crossovers in the framework of the phonon theory of liquids using molecular dynamics simulations. The obtained results are of prime importance since they imply a global reconsideration of the mere essence of the supercritical phase. Furthermore, this discovery may pave the way to new unexpected applications and to the exploration of exotic behaviour of confined fluids relevant to geo- and planetary sciences.

10.
J Chem Phys ; 130(20): 204505, 2009 May 28.
Article En | MEDLINE | ID: mdl-19485455

The behavior of cyclopentane with pressure has been investigated to 21.5 GPa using Raman spectroscopy. Various phases were observed with pressure which included liquid, two plastic, and one true crystalline phases of cyclopentane during compression and decompression sequences. Optimized molecular structure and Raman and IR vibrational spectra of the most stable puckered-ring conformation of the cyclopentane molecule were also computed using density functional theory methods. The theoretically calculated values as well as the experimentally determined pressure dependencies of spectral bands are in very good agreement with the low temperature measurements and previous mode assignments. The phase diagram of cyclopentane was analyzed with respect to pressure-induced alterations in Raman spectra across the phase boundaries. The various forms of "frozen-in" conformations in phase III are suggested to explain previous results related to existence of a "new" phase between plastic crystalline phase II and monoclinic phase III in solid cyclopentane.

11.
J Phys Chem A ; 112(45): 11501-7, 2008 Nov 13.
Article En | MEDLINE | ID: mdl-18928266

High-pressure studies of 1,3,5,7-cyclooctatetraene have been performed by using Raman spectroscopy up to 16 GPa and compared with complementary density functional calculations. Angular-dispersive X-ray diffraction studies were also performed in the solid state at elevated pressure. The lattice constants of solid 1,3,5,7-cyclooctatetraene obtained from the X-ray diffraction pattern taken at 3.8 GPa and room temperature are in good agreement with theoretical results. At least two phase transitions were observed during pressure increase followed by the loss of long-range crystallographic order, which was also associated with a strong pressure-induced luminescence that allowed estimation of band gap alterations with pressure.


Cyclooctanes/chemistry , Models, Molecular , Computer Simulation , Crystallization , Hydrostatic Pressure , Spectrum Analysis, Raman
...