Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(11): e202116194, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35029009

RESUMEN

Rechargeable aluminium (Al) batteries (RABs) have long-been pursued due to the high sustainability and three-electron-transfer properties of Al metal. However, limited redox chemistry is available for rechargeable Al batteries, which restricts the exploration of cathode materials. Herein, we demonstrate an efficient Al-amine battery based on a quaternization reaction, in which nitrogen (radical) cations (R3 N.+ or R4 N+ ) are formed to store the anionic Al complex. The reactive aromatic amine molecules further oligomerize during cycling, inhibiting amine dissolution into the electrolyte. Consequently, the constructed Al-amine battery exhibits a high reversible capacity of 135 mAh g-1 along with a superior cycling life (4000 cycles), fast charge capability and a high energy efficiency of 94.2 %. Moreover, the Al-amine battery shows excellent stability against self-discharge, far beyond conventional Al-graphite batteries. Our findings pave an avenue to advance the chemistry of RABs and thus battery performance.

2.
Chemistry ; 26(33): 7497-7503, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32298000

RESUMEN

Nanographenes (NGs) with tunable electronic and magnetic properties have attracted enormous attention in the realm of carbon-based nanoelectronics. In particular, NGs with biradical character at the ground state are promising building units for molecular spintronics. However, most of the biradicaloids are susceptible to oxidation under ambient conditions and photolytic degradation, which hamper their further applications. Herein, we demonstrated the feasibility of tuning the magnetic properties of zigzag-edged NGs in order to enhance their stability via the controlled Diels-Alder reactions of peri-tetracene (4-PA). The unstable 4-PA (y0 =0.72; half-life, t1/2 =3 h) was transformed into the unprecedented benzo-peri-tetracenes (BPTs) by a one-side Diels-Alder reaction, which featured a biradical character at the ground state (y0 =0.60) and exhibited remarkable stability under ambient conditions for several months. In addition, the fully zigzag-edged circumanthracenes (CAs) were achieved by two-fold or stepwise Diels-Alder reactions of 4-PA, in which the magnetic properties could be controlled by employing the corresponding dienophiles. Our work reported herein opens avenues for the synthesis of novel zigzag-edged NGs with tailor-made magnetic properties.

3.
Chem Commun (Camb) ; 54(42): 5307-5310, 2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29651492

RESUMEN

Herein, we report on the mechanochemical Scholl reaction of dendritic oligophenylene precursors to produce benchmark nanographenes such as hexa-peri-hexabenzocoronene (HBC), triangular shaped C60 and expanded C222 under solvent-free conditions. The solvent-free approach overcomes the bottleneck of solubility limitation in this well-known and powerful reaction. The mechanochemical approach allows tracking the reaction process by in situ pressure measurements. The quality of produced nanographenes has been confirmed by MALDI-TOF mass spectrometry and UV-Vis absorption spectroscopy. This approach paves the way towards gram scale and environmentally benign synthesis of extended nanographenes and possibly graphene nanoribbons suitable for application in carbon based electronics or energy applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA