Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Acta Derm Venereol ; 104: adv18685, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566405

Atopic dermatitis (AD), a chronic inflammatory skin disease, manifests as an intractable itch. Psychological stress has been suggested to play a role in the onset and worsening of AD symptoms. However, the pathophysiological relationships between psychological stressors and cutaneous manifestations remain unclear. To elucidate the mechanisms underlying the stress-related exacerbation of itch, we investigated the effects of water stress, restraint stress and repeated social defeat stress on itch-related scratching behaviour, mechanical alloknesis and dermatitis in male NC/Nga mice with AD-like symptoms induced by the repeated application of ointment containing Dermatophagoides farina body. NC/Nga mice with AD-like symptoms were subjected to water stress, restraint stress and repeated social defeat stress, and their scratching behaviour, sensitivity to mechanical stimuli (mechanical alloknesis) and severity of  dermatitis were evaluated. Social defeat stress+ Dermatophagoides farina body-treated mice exposed to stress showed slower improvements in or the exacerbation of AD-like symptoms, including dermatitis and itch. In the mechanical alloknesis assay, the mechanical alloknesis scores of social defeat stress+ Dermatophagoides farina body-treated mice exposed to stress were significantly higher than those of non-exposed social defeat stress+ Dermatophagoides farina body- and social defeat stress-treated mice. These results suggest that psychological stress delays improvements in dermatitis by exacerbating itch hypersensitivity in AD.


Dermatitis, Atopic , Male , Mice , Animals , Dehydration , Pruritus/etiology , Skin , Stress, Psychological/complications , Disease Models, Animal
2.
Biol Reprod ; 103(2): 254-263, 2020 08 04.
Article En | MEDLINE | ID: mdl-32529245

Spermatozoa are produced in the testis but gain their fertilizing ability during epididymal migration. This necessary step in sperm maturation includes posttranslational modification of sperm membrane proteins that includes protein processing by proteases. However, the molecular mechanism underpinning this epididymal sperm maturation remains unknown. In this study, we focused on transmembrane serine protease 12 (Tmprss12). Based on multi-tissue expression analysis by PCR, Tmprss12 was specifically expressed in the testis, and its expression started on day 10 postpartum, corresponding to the stage of zygotene spermatocytes. TMPRSS12 was detected in the acrosomal region of spermatozoa by immunostaining. To reveal the physiological function of TMPRSS12, we generated two knockout (KO) mouse lines using the CRISPR/Cas9 system. Both indel and large deletion lines were male sterile showing that TMPRSS12 is essential for male fertility. Although KO males exhibited normal spermatogenesis and sperm morphology, ejaculated spermatozoa failed to migrate from the uterus to the oviduct. Further analysis revealed that a disintegrin and metalloprotease 3 (ADAM3), an essential protein on the sperm membrane surface that is required for sperm migration, was disrupted in KO spermatozoa. Moreover, we found that KO spermatozoa showed reduced sperm motility via computer-assisted sperm analysis, resulting in a low fertilization rate in vitro. Taken together, these data indicate that TMPRSS12 has dual functions in regulating sperm motility and ADAM3-related sperm migration to the oviduct. Because Tmprss12 is conserved among mammals, including humans, our results may explain some genetic cases of idiopathic male infertility, and TMPRSS12 and its downstream cascade may be novel targets for contraception.


Serine Endopeptidases/genetics , Sperm Motility/genetics , Spermatocytes/metabolism , Spermatogenesis/genetics , Spermatozoa/metabolism , Testis/metabolism , Animals , Cell Shape/genetics , Male , Mice , Mice, Knockout , Serine Endopeptidases/metabolism , Spermatocytes/cytology , Spermatozoa/cytology
3.
Science ; 368(6495): 1132-1135, 2020 06 05.
Article En | MEDLINE | ID: mdl-32499443

The lumicrine system is a postulated signaling system in which testis-derived (upstream) secreted factors enter the male reproductive tract to regulate epididymal (downstream) pathways required for sperm maturation. Until now, no lumicrine factors have been identified. We demonstrate that a testicular germ-cell-secreted epidermal growth factor-like protein, neural epidermal growth factor-like-like 2 (NELL2), specifically binds to an orphan receptor tyrosine kinase, c-ros oncogene 1 (ROS1), and mediates the differentiation of the initial segment (IS) of the caput epididymis. Male mice in which Nell2 had been knocked out were infertile. The IS-specific secreted proteases, ovochymase 2 (OVCH2) and A disintegrin and metallopeptidase 28 (ADAM28), were expressed upon IS maturation, and OVCH2 was required for processing of the sperm surface protein ADAM3, which is required for sperm fertilizing ability. This work identifies a lumicrine system essential for testis-epididymis-spermatozoa (NELL2-ROS1-OVCH2-ADAM3) signaling and male fertility.


Cell Communication/physiology , Endopeptidases/metabolism , Epididymis/metabolism , Fertility , Infertility, Male/metabolism , Nerve Tissue Proteins/metabolism , Spermatozoa/metabolism , Testis/metabolism , ADAM Proteins/metabolism , Animals , Cell Communication/genetics , Endopeptidases/genetics , Infertility, Male/genetics , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism
4.
Biol Reprod ; 101(2): 501-511, 2019 08 01.
Article En | MEDLINE | ID: mdl-31201419

More than 1000 genes are predicted to be predominantly expressed in mouse testis, yet many of them remain unstudied in terms of their roles in spermatogenesis and sperm function and their essentiality in male reproduction. Since individually indispensable factors can provide important implications for the diagnosis of genetically related idiopathic male infertility and may serve as candidate targets for the development of nonhormonal male contraceptives, our laboratories continuously analyze the functions of testis-enriched genes in vivo by generating knockout mouse lines using the CRISPR/Cas9 system. The dispensability of genes in male reproduction is easily determined by examining the fecundity of knockout males. During our large-scale screening of essential factors, we knocked out 30 genes that have a strong bias of expression in the testis and are mostly conserved in mammalian species including human. Fertility tests reveal that the mutant males exhibited normal fecundity, suggesting these genes are individually dispensable for male reproduction. Since such functionally redundant genes are of diminished biological and clinical significance, we believe that it is crucial to disseminate this list of genes, along with their phenotypic information, to the scientific community to avoid unnecessary expenditure of time and research funds and duplication of efforts by other laboratories.


CRISPR-Cas Systems , Fertility/genetics , Gene Editing , Gene Expression Regulation/physiology , Testis/metabolism , Animals , Humans , Infertility, Male/genetics , Male , Mice , Mice, Knockout , Transcriptome
5.
J Reprod Dev ; 65(3): 239-244, 2019 Jun 14.
Article En | MEDLINE | ID: mdl-30745494

Preeclampsia is a systemic disease caused by abnormal placentation that affects both mother and fetus. It was reported that Laeverin (LVRN, also known as Aminopeptidase Q) was up-regulated in the placenta of preeclamptic patients. However, physiological and pathological functions of LVRN remained to be unknown. Here we characterized Lvrn function during placentation in mice. RT-PCR showed that Lvrn is expressed in both fetus and placenta during embryogenesis, and several adult tissues. When we overexpressed Lvrn in a placenta-specific manner using lentiviral vectors, we did not see any defects in both placentae and fetuses. The mice carrying Lvrn overexpressing placentas did not show any preeclampsia-like symptoms such as maternal high blood pressure and fetal growth restriction. We next ablated Lvrn by CRISPR/Cas9-mediated genome editing to see physiological function. In Lvrn ablated mice, maternal blood pressure during pregnancy was not affected, and both placentas and fetuses grew normally. Collectively, these results suggest that, LVRN is irrelevant to preeclampsia and dispensable for normal placentation and embryonic development in mice.


Gene Expression Regulation, Developmental , Metalloproteases/physiology , Placenta/physiology , Placentation/physiology , Animals , Blood Pressure , CRISPR-Cas Systems , Female , Fetal Growth Retardation/metabolism , Fetus/metabolism , Gene Expression Profiling , Lentivirus/metabolism , Metalloproteases/genetics , Mice , Mice, Knockout , Placentation/genetics , Pre-Eclampsia , Pregnancy , Pregnancy, Animal , Trophoblasts/metabolism
6.
Placenta ; 59 Suppl 1: S37-S43, 2017 Nov.
Article En | MEDLINE | ID: mdl-28988726

The placenta is an essential organ for embryo development in the uterus of eutherian mammals. Large contributions in unveiling molecular mechanisms and physiological functions underlying placental formation were made by analyzing mutant and transgenic animals. However, it had been difficult to elucidate whether the placental defects observed in such animals originate from the placenta itself or from the fetus, as both placental and fetal genomes are modified. Therefore strategies to modify the placental genome without affecting the "fetal genome" had been needed. Through the ingenious use of lentiviral (LV) vectors, placenta-specific modification is now possible. Lentivirus is a genus of retroviruses that use reverse-transcriptase to convert its single-strand RNA genome to double-strand DNA and integrate into the host genome. Previous studies showed that when LV vectors were used to transduce embryos at the 2-cell stage, the viral genome is systemically introduced into host genome. Interestingly, by delaying the timing of transduction to the blastocyst stage, the transgene is expressed specifically in the placenta as a consequence of trophectoderm-specific viral transduction. This review summarizes the development of the LV vector-mediated placenta-specific gene manipulation technology and its application in placental research over the past decade. A perspective for future application of LV vectors to further placenta research, especially in combination with next generation genome editing technologies, is also presented.


Gene Transfer Techniques , Genetic Engineering , Genetic Vectors , Lentivirus , Placenta , Animals , Female , Humans , Pregnancy
7.
Biol Reprod ; 94(1): 6, 2016 Jan.
Article En | MEDLINE | ID: mdl-26586843

The X-linked Plac1 gene is maternally expressed in trophoblast cells during placentation, and its disruption causes placental hyperplasia and intrauterine growth restriction. In contrast, Plac1 is also reported to be one of the upregulated genes in the hyperplastic placenta generated by nuclear transfer. However, the effect of overexpressed Plac1 on placental formation and function remained unaddressed. We complemented the Plac1 knockout placental dysfunction by lentiviral vector-mediated, placenta-specific Plac1 transgene expression. Whereas fetal development and the morphology of maternal blood sinuses in the labyrinth zone improved, placental hyperplasia remained, with an expanded the junctional zone that migrated and encroached into the labyrinth zone. Further experiments revealed that wild-type placenta with transgenically expressed Plac1 resulted in placental hyperplasia without the encroaching of the junctional zone. Our findings suggest that Plac1 is involved in trophoblast cell proliferation, differentiation, and migration. Its proper expression is required for normal placentation and fetal development.


Fetal Viability/genetics , Lentivirus/genetics , Placenta/pathology , Pregnancy Proteins/deficiency , Pregnancy Proteins/genetics , Animals , Blastocyst/metabolism , Cell Proliferation , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/pathology , Gene Expression Regulation, Developmental , Genetic Complementation Test , Genetic Vectors , Hyperplasia , Mice , Mice, Knockout , Nuclear Transfer Techniques , Pregnancy , Transgenes/genetics , Trophoblasts
...