Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 94
1.
Brain Struct Funct ; 2024 May 25.
Article En | MEDLINE | ID: mdl-38795129

It is well-established that brain size is associated with intelligence. But the relationship between cortical morphometric measures and intelligence is unclear. Studies have produced conflicting results or no significant relations between intelligence and cortical morphometric measures such as cortical thickness and peri-cortical contrast. This discrepancy may be due to multicollinearity amongst the independent variables in a multivariate regression analysis, or a failure to fully account for the relationship between brain size and intelligence in some other way. Our study shows that neither cortical thickness nor peri-cortical contrast reliably improves IQ prediction accuracy beyond what is achieved with brain volume alone. We show this in multiple datasets, with child data, developmental data, and with adult data; we show this with data acquired either at multiple sites, or at a single site; we show this with data acquired with different MRI scanner manufacturers, or with all data acquired on a single scanner; and we show this with fluid intelligence, full-scale IQ, performance IQ, and verbal IQ. But our point is not really even about IQ; rather we proffer a methodological caveat and potential explanation of the discrepancies in previous results, and which applies broadly.

2.
NMR Biomed ; : e5142, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38494895

Integrating datasets from multiple sites and scanners can increase statistical power for neuroimaging studies but can also introduce significant inter-site confounds. We evaluated the effectiveness of ComBat, an empirical Bayes approach, to combine longitudinal preclinical MRI data acquired at 4.7 or 9.4 T at two different sites in Australia. Male Sprague Dawley rats underwent MRI on Days 2, 9, 28, and 150 following moderate/severe traumatic brain injury (TBI) or sham injury as part of Project 1 of the NIH/NINDS-funded Centre Without Walls EpiBioS4Rx project. Diffusion-weighted and multiple-gradient-echo images were acquired, and outcomes included QSM, FA, and ADC. Acute injury measures including apnea and self-righting reflex were consistent between sites. Mixed-effect analysis of ipsilateral and contralateral corpus callosum (CC) summary values revealed a significant effect of site on FA and ADC values, which was removed following ComBat harmonization. Bland-Altman plots for each metric showed reduced variability across sites following ComBat harmonization, including for QSM, despite appearing to be largely unaffected by inter-site differences and no effect of site observed. Following harmonization, the combined inter-site data revealed significant differences in the imaging metrics consistent with previously reported outcomes. TBI resulted in significantly reduced FA and increased susceptibility in the ipsilateral CC, and significantly reduced FA in the contralateral CC compared with sham-injured rats. Additionally, TBI rats also exhibited a reversal in ipsilateral CC ADC values over time with significantly reduced ADC at Day 9, followed by increased ADC 150 days after injury. Our findings demonstrate the need for harmonizing multi-site preclinical MRI data and show that this can be successfully achieved using ComBat while preserving phenotypical changes due to TBI.

3.
Curr Alzheimer Res ; 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38425106

BACKGROUND: Mild Cognitive Impairment (MCI) usually precedes the symptomatic phase of dementia and constitutes a window of opportunities for preventive therapies. OBJECTIVES: The objective of this study was to predict the time an MCI patient has left to reach dementia and obtain the most likely natural history in the progression of MCI towards dementia. METHODS: This study was conducted on 633 MCI patients and 145 subjects with dementia through 4726 visits over 15 years from Alzheimer Disease Neuroimaging Initiative (ADNI) cohort. A combination of data from AT(N) profiles at baseline and longitudinal predictive modeling was applied. A data-driven approach was proposed for categorical diagnosis prediction and timeline estimation of cognitive decline progression, which combined supervised and unsupervised learning techniques. RESULTS: A reduced vector of only neuropsychological measures was selected for training the models. At baseline, this approach had high performance in detecting subjects at high risk of converting from MCI to dementia in the coming years. Furthermore, a Disease Progression Model (DPM) was built and also verified using three metrics. As a result of the DPM focused on the studied population, it was inferred that amyloid pathology (A+) appears about 7 years before dementia, and tau pathology (T+) and neurodegeneration (N+) occur almost simultaneously, between 3 and 4 years before dementia. In addition, MCI-A+ subjects were shown to progress more rapidly to dementia compared to MCI-A- subjects. CONCLUSION: Based on proposed natural histories and cross-sectional and longitudinal analysis of AD markers, the results indicated that only a single cerebrospinal fluid sample is necessary during the prodromal phase of AD. Prediction from MCI into dementia and its timeline can be achieved exclusively through neuropsychological measures.

4.
Alzheimers Res Ther ; 16(1): 46, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38414035

BACKGROUND: The pathophysiology of Alzheimer's disease (AD) involves ß -amyloid (A ß ) accumulation. Early identification of individuals with abnormal ß -amyloid levels is crucial, but A ß quantification with positron emission tomography (PET) and cerebrospinal fluid (CSF) is invasive and expensive. METHODS: We propose a machine learning framework using standard non-invasive (MRI, demographics, APOE, neuropsychology) measures to predict future A ß -positivity in A ß -negative individuals. We separately study A ß -positivity defined by PET and CSF. RESULTS: Cross-validated AUC for 4-year A ß conversion prediction was 0.78 for the CSF-based and 0.68 for the PET-based A ß definitions. Although not trained for the clinical status-change prediction, the CSF-based model excelled in predicting future mild cognitive impairment (MCI)/dementia conversion in cognitively normal/MCI individuals (AUCs, respectively, 0.76 and 0.89 with a separate dataset). CONCLUSION: Standard measures have potential in detecting future A ß -positivity and assessing conversion risk, even in cognitively normal individuals. The CSF-based definition led to better predictions than the PET-based definition.


Alzheimer Disease , Cognitive Dysfunction , Humans , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Positron-Emission Tomography , Machine Learning , tau Proteins/cerebrospinal fluid
5.
ArXiv ; 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38259346

Biophysical modeling of diffusion MRI (dMRI) offers the exciting potential of bridging the gap between the macroscopic MRI resolution and microscopic cellular features, effectively turning the MRI scanner into a noninvasive in vivo microscope. In brain white matter, the Standard Model (SM) interprets the dMRI signal in terms of axon dispersion, intra- and extra-axonal water fractions and diffusivities. However, for SM to be fully applicable and correctly interpreted, it needs to be carefully evaluated using histology. Here, we perform a comprehensive histological validation of the SM parameters, by characterizing WM microstructure in sham and injured rat brains using volume (3d) electron microscopy (EM) and ex vivo dMRI. Sensitivity is evaluated by how close each SM metric is to its histological counterpart, and specificity by how independent it is from other, non-corresponding histological features. This comparison reveals that SM is sensitive and specific to microscopic properties, clearing the way for the clinical adoption of in vivo dMRI derived SM parameters as biomarkers for neurological disorders.

6.
Epilepsy Res ; 195: 107201, 2023 09.
Article En | MEDLINE | ID: mdl-37562146

Preclinical MRI studies have been utilized for the discovery of biomarkers that predict post-traumatic epilepsy (PTE). However, these single site studies often lack statistical power due to limited and homogeneous datasets. Therefore, multisite studies, such as the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx), are developed to create large, heterogeneous datasets that can lead to more statistically significant results. EpiBioS4Rx collects preclinical data internationally across sites, including the United States, Finland, and Australia. However, in doing so, there are robust normalization and harmonization processes that are required to obtain statistically significant and generalizable results. This work describes the tools and procedures used to harmonize multisite, multimodal preclinical imaging data acquired by EpiBioS4Rx. There were four main harmonization processes that were utilized, including file format harmonization, naming convention harmonization, image coordinate system harmonization, and diffusion tensor imaging (DTI) metrics harmonization. By using Python tools and bash scripts, the file formats, file names, and image coordinate systems are harmonized across all the sites. To harmonize DTI metrics, values are estimated for each voxel in an image to generate a histogram representing the whole image. Then, the Quantitative Imaging Toolkit (QIT) modules are utilized to scale the mode to a value of one and depict the subsequent harmonized histogram. The standardization of file formats, naming conventions, coordinate systems, and DTI metrics are qualitatively assessed. The histograms of the DTI metrics were generated for all the individual rodents per site. For inter-site analysis, an average of the individual scans was calculated to create a histogram that represents each site. In order to ensure the analysis can be run at the level of individual animals, the sham and TBI cohort were analyzed separately, which depicted the same harmonization factor. The results demonstrate that these processes qualitatively standardize the file formats, naming conventions, coordinate systems, and DTI metrics of the data. This assists in the ability to share data across the study, as well as disseminate tools that can help other researchers to strengthen the statistical power of their studies and analyze data more cohesively.


Epilepsy, Post-Traumatic , Epilepsy , Animals , Epilepsy, Post-Traumatic/drug therapy , Diffusion Tensor Imaging , Magnetic Resonance Imaging , Biomarkers , Brain/diagnostic imaging
7.
Lancet Healthy Longev ; 4(8): e374-e385, 2023 08.
Article En | MEDLINE | ID: mdl-37454673

BACKGROUND: Cognitive abilities, particularly memory, normally decline with age. However, some individuals, often designated as superagers, can reach late life with the memory function of individuals 30 years younger. We aimed to characterise the brain structure of superagers and identify demographic, lifestyle, and clinical factors associated with this phenotype. METHODS: We selected cognitively healthy participants from the Vallecas Project longitudinal cohort recruited between Oct 10, 2011, and Jan 14, 2014, aged 79·5 years or older, on the basis of their delayed verbal episodic memory score. Participants were assessed with the Free and Cued Selective Reminding Test and with three non-memory tests (the 15-item version of the Boston Naming Test, the Digit Symbol Substitution Test, and the Animal Fluency Test). Participants were classified as superagers if they scored at or above the mean values for a 50-56-year-old in the Free and Cued Selective Reminding Test and within one standard deviation of the mean or above for their age and education level in the three non-memory tests, or as typical older adults if they scored within one standard deviation of the mean for their age and education level in the Free and Cued Selective Reminding Test. Data acquired as per protocol from up to six yearly follow-ups were used for longitudinal analyses. FINDINGS: We included 64 superagers (mean age 81·9 years; 38 [59%] women and 26 [41%] men) and 55 typical older adults (82·4 years; 35 [64%] women and 20 [36%] men). The median number of follow-up visits was 5·0 (IQR 5·0-6·0) for superagers and 5·0 (4·5-6·0) for typical older adults. Superagers exhibited higher grey matter volume cross-sectionally in the medial temporal lobe, cholinergic forebrain, and motor thalamus. Longitudinally, superagers also showed slower total grey matter atrophy, particularly within the medial temporal lobe, than did typical older adults. A machine learning classification including 89 demographic, lifestyle, and clinical predictors showed that faster movement speed (despite no group differences in exercise frequency) and better mental health were the most differentiating factors for superagers. Similar concentrations of dementia blood biomarkers in superager and typical older adult groups suggest that group differences reflect inherent superager resistance to typical age-related memory loss. INTERPRETATION: Factors associated with dementia prevention are also relevant for resistance to age-related memory decline and brain atrophy, and the association between superageing and movement speed could provide potential novel insights into how to preserve memory function into the ninth decade. FUNDING: Queen Sofia Foundation, CIEN Foundation, Spanish Ministry of Science and Innovation, Alzheimer's Association, European Research Council, MAPFRE Foundation, Carl Zeiss Foundation, and the EU Comission for Horizon 2020. TRANSLATION: For the Spanish translation of the abstract see Supplementary Materials section.


Brain , Dementia , Female , Male , Humans , Brain/pathology , Cognition , Phenotype , Atrophy/pathology
8.
Neuropsychopharmacology ; 48(10): 1532-1540, 2023 09.
Article En | MEDLINE | ID: mdl-36949148

Differential expression of myelin-related genes and changes in myelin thickness have been demonstrated in mice after chronic psychosocial stress, a risk factor for anxiety disorders. To determine whether and how stress affects structural remodeling of nodes of Ranvier, another form of myelin plasticity, we developed a 3D reconstruction analysis of node morphology in C57BL/6NCrl and DBA/2NCrl mice. We identified strain-dependent effects of chronic social defeat stress on node morphology in the medial prefrontal cortex (mPFC) gray matter, including shortening of paranodes in C57BL/6NCrl stress-resilient and shortening of node gaps in DBA/2NCrl stress-susceptible mice compared to controls. Neuronal activity has been associated with changes in myelin thickness. To investigate whether neuronal activation is a mechanism influencing also node of Ranvier morphology, we used DREADDs to repeatedly activate the ventral hippocampus-to-mPFC pathway. We found reduced anxiety-like behavior and shortened paranodes specifically in stimulated, but not in the nearby non-stimulated axons. Altogether, our data demonstrate (1) nodal remodeling of the mPFC gray matter axons after chronic stress and (2) axon-specific regulation of paranodes in response to repeated neuronal activity in an anxiety-associated pathway. Nodal remodeling may thus contribute to aberrant circuit function associated with anxiety disorders.


Anxiety Disorders , Anxiety , Mice , Animals , Mice, Inbred C57BL , Mice, Inbred DBA , Anxiety/metabolism , Anxiety Disorders/metabolism , Stress, Psychological/metabolism , Prefrontal Cortex/metabolism
9.
Neuroinformatics ; 21(1): 57-70, 2023 01.
Article En | MEDLINE | ID: mdl-36178571

We present MedicDeepLabv3+, a convolutional neural network that is the first completely automatic method to segment cerebral hemispheres in magnetic resonance (MR) volumes of rats with ischemic lesions. MedicDeepLabv3+ improves the state-of-the-art DeepLabv3+ with an advanced decoder, incorporating spatial attention layers and additional skip connections that, as we show in our experiments, lead to more precise segmentations. MedicDeepLabv3+ requires no MR image preprocessing, such as bias-field correction or registration to a template, produces segmentations in less than a second, and its GPU memory requirements can be adjusted based on the available resources. We optimized MedicDeepLabv3+ and six other state-of-the-art convolutional neural networks (DeepLabv3+, UNet, HighRes3DNet, V-Net, VoxResNet, Demon) on a heterogeneous training set comprised by MR volumes from 11 cohorts acquired at different lesion stages. Then, we evaluated the trained models and two approaches specifically designed for rodent MRI skull stripping (RATS and RBET) on a large dataset of 655 MR rat brain volumes. In our experiments, MedicDeepLabv3+ outperformed the other methods, yielding an average Dice coefficient of 0.952 and 0.944 in the brain and contralateral hemisphere regions. Additionally, we show that despite limiting the GPU memory and the training data, our MedicDeepLabv3+ also provided satisfactory segmentations. In conclusion, our method, publicly available at https://github.com/jmlipman/MedicDeepLabv3Plus , yielded excellent results in multiple scenarios, demonstrating its capability to reduce human workload in rat neuroimaging studies.


Cerebrum , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Brain
10.
J Neuropathol Exp Neurol ; 82(1): 71-83, 2022 12 19.
Article En | MEDLINE | ID: mdl-36331507

Diffusion tensor imaging (DTI) has demonstrated the potential to assess the pathophysiology of mild traumatic brain injury (mTBI) but correlations of DTI findings and pathological changes in mTBI are unclear. We evaluated the potential of ex vivo DTI to detect tissue damage in a mild mTBI rat model by exploiting multiscale imaging methods, histology and scanning micro-X-ray diffraction (SµXRD) 35 days after sham-operation (n = 2) or mTBI (n = 3). There were changes in DTI parameters rostral to the injury site. When examined by histology and SµXRD, there was evidence of axonal damage, reduced myelin density, gliosis, and ultrastructural alterations in myelin that were ongoing at the experimental time point of 35 days postinjury. We assessed the relationship between the 3 imaging modalities by multiple linear regression analysis. In this analysis, DTI and histological parameters were moderately related, whereas SµXRD parameters correlated weakly with DTI and histology. These findings suggest that while DTI appears to distinguish tissue changes at the microstructural level related to the loss of myelinated axons and gliosis, its ability to visualize alterations in myelin ultrastructure is limited. The use of several imaging techniques represents a novel approach to reveal tissue damage and provides new insights into mTBI detection.


Brain Concussion , Rats , Animals , Brain Concussion/pathology , Diffusion Tensor Imaging/methods , Gliosis/pathology , Axons/pathology , Myelin Sheath/pathology , Brain/pathology
11.
Biomedicines ; 10(11)2022 Oct 27.
Article En | MEDLINE | ID: mdl-36359242

It is necessary to develop reliable biomarkers for epileptogenesis and cognitive impairment after traumatic brain injury when searching for novel antiepileptogenic and cognition-enhancing treatments. We hypothesized that a multiparametric magnetic resonance imaging (MRI) analysis along the septotemporal hippocampal axis could predict the development of post-traumatic epilepsy and cognitive impairment. We performed quantitative T2 and T2* MRIs at 2, 7 and 21 days, and diffusion tensor imaging at 7 and 21 days after lateral fluid-percussion injury in male rats. Morris water maze tests conducted between 35-39 days post-injury were used to diagnose cognitive impairment. One-month-long continuous video-electroencephalography monitoring during the 6th post-injury month was used to diagnose epilepsy. Single-parameter and regularized multiple linear regression models were able to differentiate between sham-operated and brain-injured rats. In the ipsilateral hippocampus, differentiation between the groups was achieved at most septotemporal locations (cross-validated area under the receiver operating characteristic curve (AUC) 1.0, 95% confidence interval 1.0-1.0). In the contralateral hippocampus, the highest differentiation was evident in the septal pole (AUC 0.92, 95% confidence interval 0.82-0.97). Logistic regression analysis of parameters imaged at 3.4 mm from the contralateral hippocampus's temporal end differentiated between the cognitively impaired rats and normal rats (AUC 0.72, 95% confidence interval 0.55-0.84). Neither single nor multiparametric approaches could identify the rats that would develop post-traumatic epilepsy. Multiparametric MRI analysis of the hippocampus can be used to identify cognitive impairment after an experimental traumatic brain injury. This information can be used to select subjects for preclinical trials of cognition-improving interventions.

12.
Comput Methods Programs Biomed ; 226: 107056, 2022 Nov.
Article En | MEDLINE | ID: mdl-36191353

BACKGROUND AND OBJECTIVE: Machine learning techniques typically used in dementia assessment are not able to learn multiple tasks jointly and deal with time-dependent heterogeneous data containing missing values. In this paper, we reformulate SSHIBA, a recently introduced Bayesian multi-view latent variable model, for jointly learning diagnosis, ventricle volume, and ADAS score in dementia on longitudinal data with missing values. METHODS: We propose a novel Bayesian Variational inference framework capable of simultaneously imputing missing values and combining information from several views. This way, we can combine different data views from different time-points in a common latent space and learn the relationships between each time-point, using the semi-supervised formulation to fully exploit the temporal structure of the data and handle missing values. In turn, the model can combine all the available information to simultaneously model and predict multiple output variables. RESULTS: We applied the proposed model to jointly predict diagnosis, ventricle volume, and ADAS score in dementia. The comparison of imputation strategies demonstrated the superior performance of the semi-supervised formulation of the model, improving the best baseline methods. Moreover, the performance in simultaneous prediction of diagnosis, ventricle volume, and ADAS score led to an improved prediction performance over the best baseline method. CONCLUSIONS: The results demonstrate that the proposed SSHIBA framework can learn an excellent imputation of the missing values and outperforming the baselines while simultaneously predicting three different tasks.


Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Bayes Theorem , Machine Learning , Research Design
13.
Front Neurosci ; 16: 944432, 2022.
Article En | MEDLINE | ID: mdl-35968364

Non-invasive magnetic resonance imaging (MRI) methods have proved useful in the diagnosis and prognosis of neurodegenerative diseases. However, the interpretation of imaging outcomes in terms of tissue pathology is still challenging. This study goes beyond the current interpretation of in vivo diffusion tensor imaging (DTI) by constructing multivariate models of quantitative tissue microstructure in status epilepticus (SE)-induced brain damage. We performed in vivo DTI and histology in rats at 79 days after SE and control animals. The analyses focused on the corpus callosum, hippocampal subfield CA3b, and layers V and VI of the parietal cortex. Comparison between control and SE rats indicated that a combination of microstructural tissue changes occurring after SE, such as cellularity, organization of myelinated axons, and/or morphology of astrocytes, affect DTI parameters. Subsequently, we constructed a multivariate regression model for explaining and predicting histological parameters based on DTI. The model revealed that DTI predicted well the organization of myelinated axons (cross-validated R = 0.876) and astrocyte processes (cross-validated R = 0.909) and possessed a predictive value for cell density (CD) (cross-validated R = 0.489). However, the morphology of astrocytes (cross-validated R > 0.05) was not well predicted. The inclusion of parameters from CA3b was necessary for modeling histopathology. Moreover, the multivariate DTI model explained better histological parameters than any univariate model. In conclusion, we demonstrate that combining several analytical and statistical tools can help interpret imaging outcomes to microstructural tissue changes, opening new avenues to improve the non-invasive diagnosis and prognosis of brain tissue damage.

14.
NMR Biomed ; 35(12): e4804, 2022 12.
Article En | MEDLINE | ID: mdl-35892279

Filter-exchange imaging (FEXI) has already been utilized in several biomedical studies for evaluating the permeability of cell membranes. The method relies on suppressing the extracellular signal using strong diffusion weighting (the mobility filter causing a reduction in the overall diffusivity) and monitoring the subsequent diffusivity recovery. Using Monte Carlo simulations, we demonstrate that FEXI is sensitive not uniquely to the transcytolemmal exchange but also to the geometry of involved compartments: complex geometry offers locations where spins remain unaffected by the mobility filter; moving to other locations afterwards, such spins contribute to the diffusivity recovery without actually permeating any membrane. This exchange mechanism is a warning for those who aim to use FEXI in complex media such as brain gray matter and opens wide scope for investigation towards crystallizing the genuine membrane permeation and characterizing the compartment geometry.


Diffusion Magnetic Resonance Imaging , Diffusion Magnetic Resonance Imaging/methods , Monte Carlo Method , Diffusion
15.
Sci Rep ; 12(1): 8804, 2022 05 25.
Article En | MEDLINE | ID: mdl-35614095

A system of lymphatic vessels has been recently characterized in the meninges, with a postulated role in 'cleaning' the brain via cerebral fluid drainage. As meninges are the origin site of migraine pain, we hypothesized that malfunctioning of the lymphatic system should affect the local trigeminal nociception. To test this hypothesis, we studied nociceptive and inflammatory mechanisms in the hemiskull preparations (containing the meninges) of K14-VEGFR3-Ig (K14) mice lacking the meningeal lymphatic system. We recorded the spiking activity of meningeal afferents and estimated the local mast cells population, calcitonin gene-related peptide (CGRP) and cytokine levels as well as the dural trigeminal innervation in freshly-isolated hemiskull preparations from K14-VEGFR3-Ig (K14) or wild type C57BL/6 mice (WT). Spiking activity data have been confirmed in an acquired model of meningeal lymphatic dysfunction (AAV-mVEGFR3(1-4)Ig induced lymphatic ablation). We found that levels of the pro-inflammatory cytokine IL12-p70 and CGRP, implicated in migraine, were reduced in the meninges of K14 mice, while the levels of the mast cell activator MCP-1 were increased. The other migraine-related pro-inflammatory cytokines (basal and stimulated), did not differ between the two genotypes. The patterns of trigeminal innervation in meninges remained unchanged and we did not observe alterations in basal or ATP-induced nociceptive firing in the meningeal afferents associated with meningeal lymphatic dysfunction. In summary, the lack of meningeal lymphatic system is associated with a new balance between pro- and anti-migraine mediators but does not directly trigger meningeal nociceptive state.


Calcitonin Gene-Related Peptide , Migraine Disorders , Animals , Cytokines , Inflammation , Lymphatic System , Meninges , Mice , Mice, Inbred C57BL , Nociception
16.
Epilepsia ; 63(7): 1849-1861, 2022 07.
Article En | MEDLINE | ID: mdl-35451496

OBJECTIVE: This study was undertaken to identify prognostic biomarkers for posttraumatic epileptogenesis derived from parameters related to the hippocampal position and orientation. METHODS: Data were derived from two preclinical magnetic resonance imaging (MRI) follow-up studies: EPITARGET (156 rats) and Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx; University of Eastern Finland cohort, 43 rats). Epileptogenesis was induced with lateral fluid percussion-induced traumatic brain injury (TBI) in adult male Sprague Dawley rats. In the EPITARGET cohort, T 2 ∗ -weighted MRI was performed at 2, 7, and 21 days and in the EpiBioS4Rx cohort at 2, 9, and 30 days and 5 months post-TBI. Both hippocampi were segmented using convolutional neural networks. The extracted segmentation mask was used for a geometric construction, extracting 39 parameters that described the position and orientation of the left and right hippocampus. In each cohort, we assessed the parameters as prognostic biomarkers for posttraumatic epilepsy (PTE) both individually, using repeated measures analysis of variance, and in combination, using random forest classifiers. RESULTS: The extracted parameters were highly effective in discriminating between sham-operated and TBI rats in both the EPITARGET and EpiBioS4Rx cohorts at all timepoints (t; balanced accuracy > .9). The most discriminating parameter was the inclination of the hippocampus ipsilateral to the lesion at t = 2 days and the volumes at t ≥ 7 days after TBI. Furthermore, in the EpiBioS4Rx cohort, we could effectively discriminate epileptogenic from nonepileptogenic animals with a longer MRI follow-up, at t = 150 days (area under the curve = .78, balanced accuracy = .80, p = .0050), based on the orientation of both hippocampi. We found that the ipsilateral hippocampus rotated outward on the horizontal plane, whereas the contralateral hippocampus rotated away from the vertical direction. SIGNIFICANCE: We demonstrate that assessment of TBI-induced hippocampal deformation by clinically translatable MRI methodologies detects subjects with prior TBI as well as those at high risk of PTE, paving the way toward subject stratification for antiepileptogenesis studies.


Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Epilepsy , Animals , Biomarkers , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Disease Models, Animal , Epilepsy/diagnosis , Epilepsy, Post-Traumatic/diagnostic imaging , Epilepsy, Post-Traumatic/drug therapy , Epilepsy, Post-Traumatic/etiology , Hippocampus/diagnostic imaging , Humans , Male , Percussion , Prognosis , Rats , Rats, Sprague-Dawley
17.
Comput Methods Programs Biomed ; 220: 106802, 2022 Jun.
Article En | MEDLINE | ID: mdl-35436661

BACKGROUND AND OBJECTIVE: Advances in electron microscopy (EM) now allow three-dimensional (3D) imaging of hundreds of micrometers of tissue with nanometer-scale resolution, providing new opportunities to study the ultrastructure of the brain. In this work, we introduce a freely available Matlab-based gACSON software for visualization, segmentation, assessment, and morphology analysis of myelinated axons in 3D-EM volumes of brain tissue samples. METHODS: The software is equipped with a graphical user interface (GUI). It automatically segments the intra-axonal space of myelinated axons and their corresponding myelin sheaths and allows manual segmentation, proofreading, and interactive correction of the segmented components. gACSON analyzes the morphology of myelinated axons, such as axonal diameter, axonal eccentricity, myelin thickness, or g-ratio. RESULTS: We illustrate the use of the software by segmenting and analyzing myelinated axons in six 3D-EM volumes of rat somatosensory cortex after sham surgery or traumatic brain injury (TBI). Our results suggest that the equivalent diameter of myelinated axons in somatosensory cortex was decreased in TBI animals five months after the injury. CONCLUSION: Our results indicate that gACSON is a valuable tool for visualization, segmentation, assessment, and morphology analysis of myelinated axons in 3D-EM volumes. It is freely available at https://github.com/AndreaBehan/g-ACSON under the MIT license.


Axons , Brain Injuries, Traumatic , Animals , Axons/ultrastructure , Microscopy, Electron , Myelin Sheath/ultrastructure , Rats , Software
18.
Front Neurol ; 13: 820267, 2022.
Article En | MEDLINE | ID: mdl-35250823

Registration-based methods are commonly used in the automatic segmentation of magnetic resonance (MR) brain images. However, these methods are not robust to the presence of gross pathologies that can alter the brain anatomy and affect the alignment of the atlas image with the target image. In this work, we develop a robust algorithm, MU-Net-R, for automatic segmentation of the normal and injured rat hippocampus based on an ensemble of U-net-like Convolutional Neural Networks (CNNs). MU-Net-R was trained on manually segmented MR images of sham-operated rats and rats with traumatic brain injury (TBI) by lateral fluid percussion. The performance of MU-Net-R was quantitatively compared with methods based on single and multi-atlas registration using MR images from two large preclinical cohorts. Automatic segmentations using MU-Net-R and multi-atlas registration were of excellent quality, achieving cross-validated Dice scores above 0.90 despite the presence of brain lesions, atrophy, and ventricular enlargement. In contrast, the performance of single-atlas segmentation was unsatisfactory (cross-validated Dice scores below 0.85). Interestingly, the registration-based methods were better at segmenting the contralateral than the ipsilateral hippocampus, whereas MU-Net-R segmented the contralateral and ipsilateral hippocampus equally well. We assessed the progression of hippocampal damage after TBI by using our automatic segmentation tool. Our data show that the presence of TBI, time after TBI, and whether the hippocampus was ipsilateral or contralateral to the injury were the parameters that explained hippocampal volume.

19.
Glia ; 70(4): 650-660, 2022 04.
Article En | MEDLINE | ID: mdl-34936134

Previous studies have implicated several brain cell types in schizophrenia (SCZ), but the genetic impact of astrocytes is unknown. Considering their high complexity in humans, astrocytes are likely key determinants of neurodevelopmental diseases, such as SCZ. Human induced pluripotent stem cell (hiPSC)-derived astrocytes differentiated from five monozygotic twin pairs discordant for SCZ and five healthy subjects were studied for alterations related to high genetic risk and clinical manifestation of SCZ in astrocyte transcriptomics, neuron-astrocyte co-cultures, and in humanized mice. We found gene expression and signaling pathway alterations related to synaptic dysfunction, inflammation, and extracellular matrix components in SCZ astrocytes, and demyelination in SCZ astrocyte transplanted mice. While Ingenuity Pathway Analysis identified SCZ disease and synaptic transmission pathway changes in SCZ astrocytes, the most consistent findings were related to collagen and cell adhesion associated pathways. Neuronal responses to glutamate and GABA differed between astrocytes from control persons, affected twins, and their unaffected co-twins and were normalized by clozapine treatment. SCZ astrocyte cell transplantation to the mouse forebrain caused gene expression changes in synaptic dysfunction and inflammation pathways of mouse brain cells and resulted in behavioral changes in cognitive and olfactory functions. Differentially expressed transcriptomes and signaling pathways related to synaptic functions, inflammation, and especially collagen and glycoprotein 6 pathways indicate abnormal extracellular matrix composition in the brain as one of the key characteristics in the etiology of SCZ.


Induced Pluripotent Stem Cells , Schizophrenia , Animals , Astrocytes/metabolism , Genetic Predisposition to Disease/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Prosencephalon/metabolism , Schizophrenia/genetics
20.
Front Neurosci ; 15: 746214, 2021.
Article En | MEDLINE | ID: mdl-34899158

Our study investigates the potential of diffusion MRI (dMRI), including diffusion tensor imaging (DTI), fixel-based analysis (FBA) and neurite orientation dispersion and density imaging (NODDI), to detect microstructural tissue abnormalities in rats after mild traumatic brain injury (mTBI). The brains of sham-operated and mTBI rats 35 days after lateral fluid percussion injury were imaged ex vivo in a 11.7-T scanner. Voxel-based analyses of DTI-, fixel- and NODDI-based metrics detected extensive tissue changes in directly affected brain areas close to the primary injury, and more importantly, also in distal areas connected to primary injury and indirectly affected by the secondary injury mechanisms. Histology revealed ongoing axonal abnormalities and inflammation, 35 days after the injury, in the brain areas highlighted in the group analyses. Fractional anisotropy (FA), fiber density (FD) and fiber density and fiber bundle cross-section (FDC) showed similar pattern of significant areas throughout the brain; however, FA showed more significant voxels in gray matter areas, while FD and FDC in white matter areas, and orientation dispersion index (ODI) in areas most damage based on histology. Region-of-interest (ROI)-based analyses on dMRI maps and histology in selected brain regions revealed that the changes in MRI parameters could be attributed to both alterations in myelinated fiber bundles and increased cellularity. This study demonstrates that the combination of dMRI methods can provide a more complete insight into the microstructural alterations in white and gray matter after mTBI, which may aid diagnosis and prognosis following a mild brain injury.

...