Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Cell Chem Biol ; 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38582083

Phospholipase C (PLC) is a key enzyme that regulates physiological processes via lipid and calcium signaling. Despite advances in protein engineering, no tools are available for direct PLC control. Here, we developed a novel optogenetic tool, light-controlled PLCß (opto-PLCß). Opto-PLCß uses a light-induced dimer module, which directs an engineered PLC to the plasma membrane in a light-dependent manner. Our design includes an autoinhibitory capacity, ensuring stringent control over PLC activity. Opto-PLCß triggers reversible calcium responses and lipid dynamics in a restricted region, allowing precise spatiotemporal control of PLC signaling. Using our system, we discovered that phospholipase D-mediated phosphatidic acid contributes to diacylglycerol clearance on the plasma membrane. Moreover, we extended its applicability in vivo, demonstrating that opto-PLCß can enhance amygdala synaptic plasticity and associative fear learning in mice. Thus, opto-PLCß offers precise spatiotemporal control, enabling comprehensive investigation of PLC-mediated signaling pathways, lipid dynamics, and their physiological consequences in vivo.

2.
Cell Rep Methods ; 4(4): 100740, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38521059

Intracellular signaling plays essential roles in various cell types. In the central nervous system, signaling cascades are strictly regulated in a spatiotemporally specific manner to govern brain function; for example, presynaptic cyclic adenosine monophosphate (cAMP) can enhance the probability of neurotransmitter release. In the last decade, channelrhodopsin-2 has been engineered for subcellular targeting using localization tags, but optogenetic tools for intracellular signaling are not well developed. Therefore, we engineered a selective presynaptic fusion tag for photoactivated adenylyl cyclase (bPAC-Syn1a) and found its high localization at presynaptic terminals. Furthermore, an all-optical electrophysiological method revealed rapid and robust short-term potentiation by bPAC-Syn1a at brain stem-amygdala synapses in acute brain slices. Additionally, bPAC-Syn1a modulated mouse immobility behavior. These results indicate that bPAC-Syn1a can manipulate presynaptic cAMP signaling in vitro and in vivo. The all-optical manipulation technique developed in this study can help further elucidate the dynamic regulation of various cellular functions.


Adenylyl Cyclases , Cyclic AMP , Neuronal Plasticity , Presynaptic Terminals , Animals , Male , Mice , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Cyclic AMP/metabolism , HEK293 Cells , Mice, Inbred C57BL , Neuronal Plasticity/physiology , Optogenetics/methods , Presynaptic Terminals/metabolism , Rats
3.
Front Neural Circuits ; 17: 1273322, 2023.
Article En | MEDLINE | ID: mdl-38094239

Appropriately responding to various sensory signals in the environment is essential for animal survival. Accordingly, animal behaviors are closely related to external and internal states, which include the positive and negative emotional values of sensory signals triggered by environmental factors. While the lateral parabrachial nucleus (LPB) plays a key role in nociception and supports negative valences, it also transmits signals including positive valences. However, the downstream neuronal mechanisms of positive and negative valences have not been fully explored. In the present study, we investigated the ventral tegmental area (VTA) as a projection target for LPB neurons. Optogenetic activation of LPB-VTA terminals in male mice elicits positive reinforcement in an operant task and induces both avoidance and attraction in a place-conditioning task. Inhibition of glutamic acid decarboxylase (GAD) 65-expressing cells in the VTA promotes avoidance behavior induced by photoactivation of the LPB-VTA pathway. These findings indicate that the LPB-VTA pathway is one of the LPB outputs for the transmission of positive and negative valence signals, at least in part, with GABAergic modification in VTA.


Parabrachial Nucleus , Ventral Tegmental Area , Mice , Male , Animals , Ventral Tegmental Area/physiology , Neurons/physiology , Reinforcement, Psychology , Avoidance Learning/physiology
4.
Front Cell Neurosci ; 17: 1292822, 2023.
Article En | MEDLINE | ID: mdl-38162000

The amygdala plays a crucial role in aversive learning. In Pavlovian fear conditioning, sensory information about an emotionally neutral conditioned stimulus (CS) and an innately aversive unconditioned stimulus is associated with the lateral amygdala (LA), and the CS acquires the ability to elicit conditioned responses. Aversive learning induces synaptic plasticity in LA excitatory neurons from CS pathways, such as the medial geniculate nucleus (MGN) of the thalamus. Although LA excitatory cells have traditionally been classified based on their firing patterns, the relationship between the subtypes and functional properties remains largely unknown. In this study, we classified excitatory cells into two subtypes based on whether the after-depolarized potential (ADP) amplitude is expressed in non-ADP cells and ADP cells. Their electrophysiological properties were significantly different. We examined subtype-specific synaptic plasticity in the MGN-LA pathway following aversive learning using optogenetics and found significant experience-dependent plasticity in feed-forward inhibitory responses in fear-conditioned mice compared with control mice. Following aversive learning, the inhibition/excitation (I/E) balance in ADP cells drastically changed, whereas that in non-ADP cells tended to change in the reverse direction. These results suggest that the two LA subtypes are differentially regulated in relation to synaptic plasticity and I/E balance during aversive learning.

5.
Nat Commun ; 13(1): 7913, 2022 12 30.
Article En | MEDLINE | ID: mdl-36585411

Feeding behavior is adaptively regulated by external and internal environment, such that feeding is suppressed when animals experience pain, sickness, or fear. While the lateral parabrachial nucleus (lPB) plays key roles in nociception and stress, neuronal pathways involved in feeding suppression induced by fear are not fully explored. Here, we investigate the parasubthalamic nucleus (PSTN), located in the lateral hypothalamus and critically involved in feeding behaviors, as a target of lPB projection neurons. Optogenetic activation of lPB-PSTN terminals in male mice promote avoidance behaviors, aversive learning, and suppressed feeding. Inactivation of the PSTN and lPB-PSTN pathway reduces fear-induced feeding suppression. Activation of PSTN neurons expressing pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide enriched in the PSTN, is sufficient for inducing avoidance behaviors and feeding suppression. Blockade of PACAP receptors impaires aversive learning induced by lPB-PSTN photomanipulation. These findings indicate that lPB-PSTN pathway plays a pivotal role in fear-induced feeding suppression.


Parabrachial Nucleus , Mice , Male , Animals , Parabrachial Nucleus/metabolism , Fear , Pain , Hypothalamic Area, Lateral/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
6.
Psychoneuroendocrinology ; 138: 105688, 2022 04.
Article En | MEDLINE | ID: mdl-35176534

The prevalence of post-traumatic stress disorder (PTSD) is higher in women than in men. Among both humans and mice, females exhibit higher resistance to fear extinction than males, suggesting that differences between sexes in fear-extinction processes are involved in the pathophysiology of such fear-related diseases. Sex differences in molecular mechanisms underlying fear memory and extinction are unclear. The cannabinoid (CB) system is well known to be involved in fear memory and extinction, but this involvement is based mainly on experiments using male rodents. It is not known whether there are sex differences in the role of the CB system in fear memory and extinction. To explore this possibility, we investigated the effects of pharmacological manipulations of the CB system on the retrieval and extinction of contextual fear memory in male and female mice. WIN55,212-2, a CB receptor (CBR) agonist, augmented the retrieval of fear memory in both sexes, but SR141716 (a CB1R antagonist) did not affect it in either sex. An enhancement of 2-arachidonylglycerol (2-AG, one of the two major endocannabinoids) via JZL184 (an inhibitor of the 2-AG hydrolase monoacylglycerol lipase [MAGL]), augmented the retrieval of fear memory through the activation of CB1R but not CB2R in female mice. In contrast, the enhancement of N-arachidonylethanolamine (AEA, the other major endocannabinoid) via URB597, an inhibitor of an AEA hydrolase (fatty acid amide hydrolase-1) did not show any effects on the retrieval of fear memory in either sex. WIN55,212-2, SR141716, and JZL184 inhibited fear extinction irrespective of sex. URB enhanced fear extinction in females that were in diestrus phase at the first extinction session, but not in males. These results suggest that although the role of CB1R in the retrieval and extinction of contextual fear memory is common among males and females, the effects of an increase in endocannabinoid levels on the retrieval or extinction of contextual fear memory differ between the sexes.


Cannabinoids , Endocannabinoids , Extinction, Psychological , Fear , Sex Factors , Animals , Cannabinoids/pharmacology , Endocannabinoids/pharmacology , Extinction, Psychological/physiology , Fear/physiology , Female , Humans , Hydrolases/pharmacology , Male , Mice , Receptor, Cannabinoid, CB1 , Rimonabant/pharmacology
7.
Mol Brain ; 14(1): 94, 2021 06 24.
Article En | MEDLINE | ID: mdl-34167570

The neuronal circuitry for pain signals has been intensively studied for decades. The external lateral parabrachial nucleus (PB) was shown to play a crucial role in nociceptive information processing. Previous work, including ours, has demonstrated that stimulating the neuronal pathway from the PB to the central region of the amygdala (CeA) can substitute for an actual pain signal to drive an associative form of threat/fear memory formation. However, it is still unknown whether activation of the PB-CeA pathway can directly drive avoidance behavior, escape behavior, or only acts as strategic freezing behavior for later memory retrieval. To directly address this issue, we have developed a real-time Y-maze conditioning behavioral paradigm to examine avoidance behavior induced by optogenetic stimulation of the PB-CeA pathway. In this current study, we have demonstrated that the PB-CeA pathway carries aversive information that can directly trigger avoidance behavior and thereby serve as an alarm signal to induce adaptive behaviors for later decision-making.


Amygdala/physiology , Avoidance Learning/physiology , Behavior, Animal/physiology , Parabrachial Nucleus/physiology , Animals , Conditioning, Classical , Male , Maze Learning , Mice, Inbred C57BL
8.
Sci Rep ; 10(1): 11714, 2020 07 16.
Article En | MEDLINE | ID: mdl-32678183

There is a rapidly growing demand for female animals in preclinical animal, and thus it is necessary to determine animals' estrous cycle stages from vaginal smear cytology. However, the determination of estrous stages requires extensive training, takes a long time, and is costly; moreover, the results obtained by human examiners may not be consistent. Here, we report a machine learning model trained with 2,096 microscopic images that we named the "Stage Estimator of estrous Cycle of RodEnt using an Image-recognition Technique (SECREIT)." With the test dataset (736 images), SECREIT achieved area under the receiver-operating-characteristic curve of 0.962 or more for each estrous stage. A test using 100 images showed that SECREIT provided correct classification that was similar to that provided by two human examiners (SECREIT: 91%, Human 1: 91%, Human 2: 79%) in 11 s. The SECREIT can be a first step toward accelerating the research using female rodents.


Deep Learning , Estrous Cycle , Adult , Animals , Area Under Curve , Data Accuracy , Epithelial Cells , Female , Humans , Leukocytes , Male , Mice , Mice, Inbred C57BL , Neural Networks, Computer , ROC Curve , Sensitivity and Specificity , Vagina/cytology , Vaginal Smears
9.
Neurosci Lett ; 715: 134670, 2020 01 10.
Article En | MEDLINE | ID: mdl-31805374

Tropomyosin-related kinase B receptor (TrkB) is one of the new candidate receptors for drugs targeting psychiatric and neurodegenerative disorders. Recently, 7,8-dihydroxyflavone (7,8-DHF) has been identified as a selective TrkB agonist that crosses the blood-brain barrier after oral or intraperitoneal administration, and it enhances cued fear extinction in male rodents. However, its effects on females remain unclear. Preclinical research including both sexes is important for the development of treatment, particularly, for stress-related disorders such as post-traumatic stress disorder because such disorders are more prevalent in women. Therefore, we investigated the effects of 7,8-DHF on cued and contextual fear extinction in both male and female mice. Here we demonstrated that the administration of 7,8-DHF before each extinction session attenuated cued fear extinction in females; conversely, it enhanced cued fear extinction in males. However, administration of 7,8-DHF immediately after each extinction session did not affect cued fear extinction in either sex. Moreover, in contextual fear extinction, administration of 7,8-DHF before each extinction session did not affect fear extinction in either sex. Thus, 7,8-DHF showed sex-dependent opposite effects on cued fear extinction in mice when administered before but not immediately after each extinction session. Our results could contribute to the development of pharmacotherapy involving 7,8-DHF, particularly for stress-related disorders.


Cues , Extinction, Psychological/drug effects , Fear/drug effects , Flavones/pharmacology , Sex Characteristics , Animals , Female , Male , Membrane Glycoproteins/agonists , Mice , Protein-Tyrosine Kinases
10.
Neurosci Lett ; 687: 119-123, 2018 11 20.
Article En | MEDLINE | ID: mdl-30240823

Fear conditioning and extinction is a useful tool for understanding the pathogenesis of fear-related disorders including post-traumatic stress disorder (PTSD) and for developing treatments for them. To investigate the role of sub-brain regions or molecular mechanisms in fear conditioning and extinction, neuroscientists have been employing an optogenetic or in vivo recording technique, in which placement of an optical fiber or an electrode into the brain region of a free-moving mouse is essential. These methods require isolation rearing (at least one week) from the brain surgery to the behavioral test. Although such short-term adult rearing has been shown not to influence fear memory and extinction in males, the effect in females remains unclear. In the present study, we investigated the effect on fear memory and fear extinction of adult isolation rearing during the one week before contextual fear conditioning in both male and female mice. This short-term adult isolation rearing increased fear responses in the contextual fear memory test in females but not in males. On the other hand, the rearing showed no effect on fear responses during fear extinction or the recall test in either sex. In summary, adult short-term isolation rearing enhanced only fear memory, and only in females.


Extinction, Psychological/physiology , Fear/physiology , Fear/psychology , Memory/physiology , Sex Characteristics , Social Isolation/psychology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Random Allocation
11.
J Anesth ; 29(5): 741-8, 2015 Oct.
Article En | MEDLINE | ID: mdl-26003536

INTRODUCTION: Insulin-like growth factor 1 (IGF-1) and erythropoietin (EPO) have been reported to independently protect against ischemic spinal cord injury in rabbits. In the present study, we investigated whether the combination of IGF-1 and EPO protects against ischemic spinal cord injury in rabbits. METHODS: Animals were assigned to 1 of 4 groups (n = 6 in each): a control group (saline), an IGF-1 group (IGF-1 0.3 mg/kg), an EPO group (EPO 800 U/kg), or an IGF-1 + EPO group (IGF-1 0.3 mg/kg + EPO 800 U/kg). Spinal cord ischemia was produced by occluding the abdominal aorta for 15 min. Saline, IGF-1, and EPO were administered intravenously just after the start of reperfusion. Hindlimb motor function was assessed daily for 7 days, after which histopathological evaluation was performed. To analyze phosphorylation of signal transduction molecules, animals were assigned to 1 of the 4 groups (n = 8 in each). Spinal cord ischemia and the treatment were the same as those described above. The spinal cords were removed at 15 or 30 min after reperfusion and used to analyze phosphorylation of signal transduction molecules. Four animals served as the preischemic control, and the spinal cord was removed just before the start of ischemia. RESULTS: In the IGF-1 + EPO group, both neurological and histopathological outcomes were significantly improved as compared to the control group, which was consistent with the increase of Janus kinase-2 (JAK2) phosphorylation. CONCLUSIONS: The combination of IGF-1 and EPO protects against ischemic spinal cord injury in rabbits. JAK2 might contribute to the protective effect.


Erythropoietin/pharmacology , Insulin-Like Growth Factor I/pharmacology , Spinal Cord Injuries/prevention & control , Spinal Cord Ischemia/prevention & control , Animals , Erythropoietin/administration & dosage , Insulin-Like Growth Factor I/administration & dosage , Male , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Phosphorylation , Rabbits , Spinal Cord Ischemia/physiopathology
...