Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39204711

RESUMEN

Central Asia (CA) is located in the interior of the Eurasian continent and consists of five countries-Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan. It contains the largest concentration of temperate deserts and mountains of CA biodiversity hotspots. However, regionwide floristic diversity is sorely lacking, and nationwide floristic diversity is seriously outdated in this region. Using the data collected by the Mapping Asia Plants (MAP) project, we describe and analyze the diverse floristic characteristics of plant diversity in CA at both the regional and national levels, including the dominant families and genera, endemic taxa, and floristic similarity. The results allow the compilation of a new checklist of vascular plants in CA, including 9643 taxa (1198 genera within 139 families) and 3409 endemic taxa (414 genera in 66 families). We confirm that there are 5695, 4036, 4542, 3005, and 4222 species of vascular plants within the CA countries, of which 532, 326, 505, 175, and 301 species are endemic taxa in Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan, respectively. The region's biodiversity is notable for its high degree of endemism-up to 35.35%-which contributes to the floristic uniqueness and the irreplaceability of CA. Tajikistan, encompassing the most dominant area of the CA mountains, has the highest species density (3.19/100 km2) and endemism (11.12%) among the five countries. Neighboring countries such as Tajikistan and Uzbekistan, and Kazakhstan and Kyrgyzstan share more species in common, while Turkmenistan has less species overlap with the other four countries. Trends in endemic and total taxa are consistent. This comprehensive inventory is novel, revealing CA's plant diversity in two dimensions and providing a solid foundation for subsequent research that will be beneficial to the transboundary conservation and sustainable use of plant resources in CA.

2.
Mitochondrial DNA B Resour ; 9(2): 237-241, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38313467

RESUMEN

In this study, we report the first complete plastome sequence of Datisca cannabina (GenBank acc. no. OP432690). The plastome had a typical quadripartite structure. Its size was 162,914 bp, consisting of 90,890 bp large single-copy (LSC), 19,296 bp small single-copy (SSC), and 26,364 bp inverted repeat (IR) regions. It contained 112 genes, including 78 protein-coding, 30 tRNA, and four rRNA genes. The infA gene was pseudogenized. Sixteen genes contain one intron and two genes (clpP and ycf3) had two introns. Our phylogenetic tree showed that D. cannabina formed a close relationship with Begoniaceae. However, further samples are required to determine the phylogenetic placement of Datiscaceae in Cucurbitales.

3.
PhytoKeys ; 219: 35-48, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37252455

RESUMEN

A new species, Alliumsunhangiisp. nov., of the Middle Asiatic section Brevidentia F.O.Khass. & Iengal., (subgenusAllium, tribe Allioideae, Amaryllidaceae) is described. The species is a small plant from the Babatag Ridge in the Surkhandarya province of Uzbekistan. It is morphologically close to Alliumbrevidens Vved. in having initially dark violet filaments and three-cuspidate inner filaments, but differs by its small size and visibly unequal tepals as well as in the phylogenetic analysis based on ITS data.

4.
Plants (Basel) ; 10(1)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440727

RESUMEN

The genus Lagochilus (Lamiaceae) is native to Central, South-Central, and Eastern Asia. It comprises 44 species, which have been commonly used as herbal medicines for the treatments of various ailments for thousands of years, especially in Asian countries. This review aims to summarize the chemical constituents and pharmacological activities of species from the genus Lagochilus to unveil opportunities for future research. In addition, we provide some information about their traditional uses, botany, and diversity. More than 150 secondary metabolites have been reported from Lagochilus, including diterpenes, flavonoids, phenolic compounds, triterpenoids, iridoid glycosides, lignans, steroids, alkaloids, polysaccharides, volatile, non-volatile and aromatic compounds, lipids, carbohydrates, minerals, vitamins, and other secondary metabolites. In vitro and in vivo pharmacological studies on the crude extracts, fractions, and isolated compounds from Lagochilus species showed hemostatic, antibacterial, anti-inflammatory, anti-allergic, cytotoxic, enzyme inhibitory, antispasmodic, hypotensive, sedative, psychoactive, and other activities.

5.
Mol Phylogenet Evol ; 137: 190-199, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31102687

RESUMEN

The tribe Urticeae (Urticaceae), popularly known as Nettles, include 12 genera and ca. 200 species, constituting a diverse and cosmopolitan plant clade centered in tropical Asia, Africa, and South America. The global distribution of this clade makes it an excellent group to test hypotheses regarding the processes underlying tropical intercontinental disjunctions. More specifically, it allows us to test whether current distribution patterns resulted from recent transoceanic long-distance dispersal or ancient vicariance after boreotropical migration. We reconstructed the phylogeny of Nettles with the nuclear ITS and four plastid DNA regions (rbcL, trnL-F, matK and rpl14-rpl36) using Bayesian inference and maximum parsimony approaches. We inferred divergence times using a Bayesian uncorrelated lognormal relaxed molecular clock model and ancestral areas using the divergence-extinction-cladogenesis (DEC) model. Our results indicate a tropical Asian origin for the tribe during the late Paleocene. Migration events to Eurasia, South America and Africa occurred mainly during the Oligocene and Miocene. However, several long-distance dispersal events, including dispersals from Asia to Hawaii or Australasia, were inferred to have occurred from the Miocene onwards. The fleshy fruits and winged diaspores of several taxa are suited for long-distance dispersal.


Asunto(s)
Dispersión de Semillas/fisiología , Urticaceae/fisiología , Asia , Teorema de Bayes , Filogenia , Filogeografía , Factores de Tiempo , Clima Tropical
6.
Ecol Evol ; 9(1): 364-377, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30680120

RESUMEN

Prangos fedtschenkoi (Regel & Schmalh.) Korovin and P. lipskyi Korovin (Apiaceae) are rare plant species endemic to mountainous regions of Middle Asia. Both are edificators of biotic communities and valuable resource plants. The results of recent phylogenetic analyses place them in Prangos subgen. Koelzella (M. Hiroe) Lyskov & Pimenov and suggest they may possibly represent sister species. To aid in development of molecular markers useful for intraspecific phylogeographic and population-level genetic studies of these ecologically and economically important plants, we determined their complete plastid genome sequences and compared the results obtained to several previously published plastomes of Apiaceae. The plastomes of P. fedtschenkoi and P. lipskyi are typical of Apiaceae and most other higher plant plastid DNAs in their sizes (153,626 and 154,143 bp, respectively), structural organization, gene arrangement, and gene content (with 113 unique genes). A total of 49 and 48 short sequence repeat (SSR) loci of 10 bp or longer were detected in P. fedtschenkoi and P. lipskyi plastomes, respectively, representing 42-43 mononucleotides and 6 AT dinucleotides. Seven tandem repeats of 30 bp or longer with a sequence identity ≥90% were identified in each plastome. Further comparisons revealed 319 polymorphic sites between the plastomes (IR, 21; LSC, 234; SSC, 64), representing 43.8% transitions (Ts), 56.1% transversions (Tv), and a Ts/Tv ratio of 0.78. Within genic regions, two indel events were observed in rpoA (6 and 51 bp) and ycf1 (3 and 12 bp), and one in ndhF (6 bp). The most variable intergenic spacer region was that of accD/psaI, with 21.1% nucleotide divergence. Each Prangos species possessed one of two separate inversions (either 5 bp in ndhB intron or 9 bp in petB intron), and these were predicted to form hairpin structures with flanking repeat sequences of 18 and 19 bp, respectively. Both species have also incorporated novel DNA in the LSC region adjacent to the LSC/IRa junction, and BLAST searches revealed it had a 100 bp match (86% sequence identity) to noncoding mitochondrial DNA. Prangos-specific primers were developed for the variable accD/psaI intergenic spacer and preliminary PCR-surveys suggest that this region will be useful for future phylogeographic and population-level studies.

7.
Mol Phylogenet Evol ; 128: 203-211, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30076981

RESUMEN

The relationships among the genera of the early-diverging eudicot family Berberidaceae have long been controversial. To resolve these relationships and to better understand plastome evolution within the family, we sequenced the complete plastome sequences of ten Berberidaceae genera, combined these with six existing plastomes for the family, and conducted a series of phylogenomic analyses on the resulting data set. Five of the newly sequenced plastomes were found to possess the typical angiosperm plastome complement of 79 protein-coding genes, 4 rRNA genes, and 30 tRNA genes. The infA gene was found to be pseudogenized in Bongardia, Diphylleia, Dysosma and Vancouveria; rps7 was found to be severely truncated in Diphylleia, Dysosma and Podophyllum; clpP was found to be highly divergent in Vancouveria; and a ∼19 kb inversion was detected in Bongardia. Maximum likelihood phylogenetic analyses of a 79-gene, 24-taxon data set including nearly all genera of Berberidaceae recovered four chromosome groups (x = 6, 7, 8, 10), resolved the x = 8 group as the sister to the x = 10 group, and supported the monophyly of the clade comprising x = 7, 8, 10. The generic relationships within each group were all resolved with high support. Based on gene presence within the Inverted Repeat (IR), a total of seven plastome IR types were identified within Berberidaceae. Biogeographical analysis indicated the origin and diversification of Berberidaceae has likely been strongly influenced by the distribution of its favored habitat: temperate forests.


Asunto(s)
Berberidaceae/clasificación , Berberidaceae/genética , Filogenia , Plastidios/genética , Evolución Molecular , Genes de Plantas , Geografía , Secuencias Invertidas Repetidas/genética , Especificidad de la Especie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA