Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
PeerJ ; 11: e16176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37872945

RESUMEN

Background: Musculoskeletal disorders (MSDs), especially in the lumbar spine, are a leading concern in occupational health. Work activities associated with excessive exposure are a source of risk for MSDs. The optimal design of workplaces requires changes in both sitting and standing postures. In order to secure such a design scientifically proved quantitative data are needed that would allow for the assessment of differences in spine load due to body posture and/or exerted force. Intradiscal pressure (IP) measurement in the lumbar spine is the most direct method of estimating spinal loads. Hence, this study aims at the quantitative evaluation of differences in lumbar spine load due to body posture and exerted forces, based on IP reported in publications obtained from a comprehensive review of the available literature. Methodology: In order to collect data from studies measuring IP in the lumbar spine, three databases were searched. Studies with IP for living adults, measured in various sitting and standing postures, where one of these was standing upright, were included in the analysis. For data to be comparable between studies, the IP for each position was referenced to upright standing. Where different studies presented IP for the same postures, those relative IPs (rIP) were merged. Then, an analysis of the respective outcomes was conducted to find the possible relationship of IPs dependent on a specific posture. Results: A preliminary analysis of the reviewed papers returned nine items fulfilling the inclusion and exclusion criteria. After merging relative IPs from different studies, rIP for 27 sitting and 26 standing postures was yielded. Some of the data were useful for deriving mathematical equations expressing rIP as a function of back flexion angle and exerted force in the form of a second degree polynomial equation for the standing and sitting positions. The equations showed that for the standing posture, the increase in IP with increasing back flexion angle is steeper when applying an external force than when maintaining body position only. In a sitting position with the back flexed at 20°, adding 10 kg to each hand increases the IP by about 50%. According to the equations developed, for back flexion angles less than 20°, the IP is greater in sitting than in standing. When the angle is greater than 20°, the IP in the sitting position is less than in the standing position at the same angle of back flexion. Conclusions: Analysis of the data from the reviewed papers showed that: sitting without support increases IP by about 30% in relation to upright standing; a polynomial of the second degree defines changes in IP as a function of back flexion for for both postures. There are differences in the pattern of changes in IP with a back flexion angle between sitting and standing postures, as back flexion in standing increases IP more than in sitting.


Asunto(s)
Enfermedades Musculoesqueléticas , Sedestación , Adulto , Humanos , Posición de Pie , Postura , Vértebras Lumbares , Región Lumbosacra
2.
Materials (Basel) ; 16(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37834671

RESUMEN

Boron carbide is one of the hardest materials in the world which can be synthesized by various methods. The most common one is a carbothermic or magnesiothermic reduction of B2O3 performed at high temperatures, where the obtained powder still requires grinding and purification. The goal of this research is to present the possibility of synthesizing B4C nanoparticles from elements via vapor deposition and modifying the morphology of the obtained powders, particularly those synthesized at high temperatures. B4C nanoparticles were synthesized in the process of direct synthesis from boron and carbon powders heated at the temperature of 1650 °C for 2 h under argon and characterized by using scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray diffraction analysis, and dynamic light scattering measurements. The physicochemical characteristics of B4C nanoparticles were determined, including the diffusion coefficients, hydrodynamic diameter, electrophoretic mobilities, and zeta potentials. An evaluation of the obtained B4C nanoparticles was performed on several human and mouse cell lines, showing the relation between the cytotoxicity effect and the size of the synthesized nanoparticles. Assessing the suitability of the synthesized B4C for further modifications in terms of its applicability in boron neutron capture therapy was the overarching goal of this research.

4.
Ultramicroscopy ; 253: 113824, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37572392

RESUMEN

To visualize the varying tetragonal distortions in high carbon martensitic steels by EBSD, two different approaches have been applied on backscattered Kikuchi diffraction (BKD) patterns. A band-edge refinement technique called Refined Accuracy (RA) (Oxford Instruments) is compared with a technique called Pattern Matching (PM), which optimizes the fit to a simulated BKD signal. RA distinguishes between hypothetical phases of different fixed c/a, while PM determines a best fitting continuous c/a by projective transformation of a master pattern. Both techniques require stored BKD patterns. The sensitivity of the c/a-determination was tested by investigating the microstructure of a ferritic steel with an expected c/a=1. The influence of the Kikuchi pattern noise on c/a was compared for a single or 40 averaged frames per measuring point, and turned out to be not significant. The application of RA and PM on the martensitic microstructure delivered qualitatively similar maps of c/a. The comparison of RA and PM shows that RA is suitably fast and precise during mapping the martensite c/a ratio in analyses of high carbon martensite, especially for fast initial surveys. As RA leads quantitatively to higher noise in c/a, the PM analysis can be used for higher precision results.

5.
J Appl Crystallogr ; 56(Pt 2): 349-360, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37032971

RESUMEN

The derivation of a crystal structure and its phase-specific parameters from a single wide-angle backscattered Kikuchi diffraction pattern requires reliable extraction of the Bragg angles. By means of the first derivative of the lattice profile, an attempt is made to determine fully automatically and reproducibly the band widths in simulated Kikuchi patterns. Even under such ideal conditions (projection centre, wavelength and lattice plane traces are perfectly known), this leads to a lattice parameter distribution whose mean shows a linear offset that correlates with the mean atomic number Z of the pattern-forming phase. The consideration of as many Kikuchi bands as possible reduces the errors that typically occur if only a single band is analysed. On the other hand, the width of the resulting distribution is such that higher image resolution of diffraction patterns, employing longer wavelengths to produce wider bands or the use of higher interference orders is less advantageous than commonly assumed.

6.
J Appl Crystallogr ; 56(Pt 2): 367-380, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37032972

RESUMEN

A pseudosymmetric description of the crystal lattice derived from a single wide-angle Kikuchi pattern can have several causes. The small size (<15%) of the sector covered by an electron backscatter diffraction pattern, the limited precision of the projection centre position and the Kikuchi band definition are crucial. Inherent pseudosymmetries of the crystal lattice and/or structure also pose a challenge in the analysis of Kikuchi patterns. To eliminate experimental errors as much as possible, simulated Kikuchi patterns of 350 phases have been analysed using the software CALM [Nolze et al. (2021). J. Appl. Cryst. 54, 1012-1022] in order to estimate the frequency of and reasons for pseudosymmetric crystal lattice descriptions. Misinterpretations occur in particular when the atomic scattering factors of non-equivalent positions are too similar and reciprocal-lattice points are systematically missing. As an example, a pseudosymmetry prediction depending on the elements involved is discussed for binary AB compounds with B1 and B2 structure types. However, since this is impossible for more complicated phases, this approach cannot be directly applied to compounds of arbitrary composition and structure.

7.
J Appl Crystallogr ; 56(Pt 2): 361-366, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37032975

RESUMEN

A band width determination using the first derivative of the band profile systematically underestimates the true Bragg angle. Corrections are proposed to compensate for the resulting offset Δa/a of the mean lattice parameters derived from as many Kikuchi band widths as possible. For dynamically simulated Kikuchi patterns, Δa/a can reach up to 8% for phases with a high mean atomic number Z, whereas for much more common low-Z materials the offset decreases linearly. A predicted offset Δa/a = f(Z) is therefore proposed, which also includes the unit-cell volume and thus takes into account the packing density of the scatterers in the material. Since Z is not always available for unknown phases, its substitution by Z max, i.e. the atomic number of the heaviest element in the compound, is still acceptable for an approximate correction. For simulated Kikuchi patterns the offset-corrected lattice parameter deviation is Δa/a < 1.5%. The lattice parameter ratios, and the angles α, ß and γ between the basis vectors, are not affected at all.

8.
Materials (Basel) ; 14(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34947198

RESUMEN

In this work, we report the synthesis method of carbon quantum dots (CDs) using the one-step method for fast and effective metal ion determination. Ascorbic acid was used as an inexpensive and environmentally friendly precursor. High-pressure and high-temperature reactors were used for this purpose. Microscopic characterization revealed the size of CDs was in the range of 2-6 nm and they had an ordered structure. The photoluminescence properties of the CDs depend on the process temperature, and we obtained the highest PL spectra for 6 h of hydrothermal reaction. The maximum emission spectra depend poorly on synthesis time. Further characterization shows that CDs are a good contender for sensing Fe3+ in aqueous systems and can detect concentrations up to 0.49 ppm. The emission spectra efficiency was enhanced by up to 200% with synthesis time.

9.
Nanomaterials (Basel) ; 11(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34947708

RESUMEN

In this paper, the accurate determination of the size and size distribution of bipyramidal anatase nanoparticles (NPs) after deposition as single particles on a silicon substrate by correlative Scanning Electron Microscopy (SEM) with Atomic Force Microscopy (AFM) analysis is described as a new measurement procedure for metrological purposes. The knowledge of the exact orientation of the NPs is a crucial step in extracting the real 3D dimensions of the particles. Two approaches are proposed to determine the geometrical orientation of individual nano-bipyramides: (i) AFM profiling along the long bipyramid axis and (ii) stage tilting followed by SEM imaging. Furthermore, a recently developed method, Transmission Kikuchi Diffraction (TKD), which needs preparation of the crystalline NPs on electron-transparent substrates such as TEM grids, has been tested with respect to its capability of identifying the geometrical orientation of the individual NPs. With the NPs prepared homogeneously on a TEM grid, the transmission mode in a SEM, i.e., STEM-in-SEM (or T-SEM), can be also applied to extract accurate projection dimensions of the nanoparticles from the same sample area as that analysed by SEM, TKD and possibly AFM. Finally, Small Angle X-ray Scattering (SAXS) can be used as an ensemble technique able to measure the NPs in liquid suspension and, with ab-initio knowledge of the NP shape from the descriptive imaging techniques, to provide traceable NP size distribution and particle concentration.

10.
Materials (Basel) ; 14(21)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34772120

RESUMEN

The process of noble metals ions recovery and the removal small fraction of nanoparticles from waste solution is an urgent topic not only from the economic but also ecology point of view. In this paper, the use of activated carbon fibers (ACF) as a "trap" for gold nanoparticles obtained by a chemical reduction method is described. The synthesized nanoparticles were stabilized either electrostatically or electrosterically and then deposited on carbon fibers or activated carbon fibers. Moreover, the deposition of metal on fibers was carried out in a batch reactor and a microreactor system. It is shown, that process carried out in the microreactor system is more efficient (95%) as compared to the batch reactor and allows for effective gold nanoparticles removal from the solution. Moreover, for similar conditions, the adsorption time of the AuNPs on ACF is shortened from 11 days for the process carried out in the batch reactor to 2.5 min in the microreactor system.

11.
Ultramicroscopy ; 230: 113372, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34479040

RESUMEN

Signal optimization for transmission Kikuchi diffraction (TKD) measurements in the scanning electron microscope is investigated by a comparison of different sample holder designs. An optimized design is presented, which uses a metal shield to efficiently trap the electron beam after transmission through the sample. For comparison, a second holder configuration allows a significant number of the transmitted electrons to scatter back from the surface of the sample holder onto the diffraction camera screen. It is shown that the secondary interaction with the sample holder leads to a significant increase in the background level, as well as to additional noise in the final Kikuchi diffraction signal. The clean TKD signal of the optimized holder design with reduced background scattering makes it possible to use small signal changes in the range of 2% of the camera full dynamic range. As is shown by an analysis of the power spectrum, the signal-to-noise ratio in the processed Kikuchi diffraction patterns is improved by an order of magnitude. As a result, the optimized design allows an increase in pattern signal to noise ratio which may lead to increase in measurement speed and indexing reliability.

12.
J Microsc ; 284(2): 157-184, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34275156

RESUMEN

We discuss a refined simulation approach which treats Kikuchi diffraction patterns in electron backscatter diffraction (EBSD) and transmission Kikuchi diffraction (TKD). The model considers the result of two combined mechanisms: (a) the dynamical diffraction of electrons emitted coherently from point sources in a crystal and (b) diffraction effects on incoherent diffuse intensity distributions. Using suitable parameter settings, the refined simulation model allows to reproduce various thickness- and energy-dependent features which are observed in experimental Kikuchi diffraction patterns. Excess-deficiency features are treated by the effect of gradients in the incoherent background intensity. Based on the analytical two-beam approximation to dynamical electron diffraction, a phenomenological model of excess-deficiency features is derived, which can be used for pattern matching applications. The model allows to approximate the effect of the incident beam geometry as a correction signal for template patterns which can be reprojected from pre-calculated reference data. As an application, we find that the accuracy of fitted projection centre coordinates in EBSD and TKD can be affected by changes in the order of 10 - 3 - 10 - 2 if excess-deficiency features are not considered in the theoretical model underlying a best-fit pattern matching approach. Correspondingly, the absolute accuracy of simulation-based EBSD strain determination can suffer from biases of a similar order of magnitude if excess-deficiency effects are neglected in the simulation model.

13.
Materials (Basel) ; 14(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206338

RESUMEN

Cu2MnSnS4 (CMTS) is acknowledged as an alternative to traditional semiconductors. The structure and microstructure of synthetic CMTS depend on, among other things, the types of sulfur sources used. Traditionally obtained CMTS mostly has a tetragonal structure. In this study, the effect of using thiourea (Tu) or Na2S as a sulfur source on the product structure was compared using hydrothermal synthesis at 190 °C for 7 days (ethylene glycol with water in the presence of poly(vinylpyrollidone) was used as a solvent). When Tu was used, CMTS precipitated in the form of concentric microspheres, 1-1.5 µm in size, consisting of hexagonal (in the cores) and tetragonal (the rims) forms. Most probably, the rapidly formed hexagonal nucleus was later surrounded by a slower-forming rim with a tetragonal structure. In contrast, when Na2S was used as a precursor, microspheres were not formed and a fine crystalline material with a homogeneous tetragonal structure was obtained. This allowed for the choice of micromorphology and product structure during synthesis.

14.
J Appl Crystallogr ; 54(Pt 3): 1012-1022, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34188620

RESUMEN

A new software is presented for the determination of crystal lattice parameters from the positions and widths of Kikuchi bands in a diffraction pattern. Starting with a single wide-angle Kikuchi pattern of arbitrary resolution and unknown phase, the traces of all visibly diffracting lattice planes are manually derived from four initial Kikuchi band traces via an intuitive graphical user interface. A single Kikuchi bandwidth is then used as reference to scale all reciprocal lattice point distances. Kikuchi band detection, via a filtered Funk transformation, and simultaneous display of the band intensity profile helps users to select band positions and widths. Bandwidths are calculated using the first derivative of the band profiles as excess-deficiency effects have minimal influence. From the reciprocal lattice, the metrics of possible Bravais lattice types are derived for all crystal systems. The measured lattice parameters achieve a precision of <1%, even for good quality Kikuchi diffraction patterns of 400 × 300 pixels. This band-edge detection approach has been validated on several hundred experimental diffraction patterns from phases of different symmetries and random orientations. It produces a systematic lattice parameter offset of up to ±4%, which appears to scale with the mean atomic number or the backscatter coefficient.

15.
J Mech Behav Biomed Mater ; 119: 104519, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33915438

RESUMEN

Free from toxic elements biomaterial potentially applicable for load bearing biomedical implants was obtained for the first time by laser cladding of S520 bioactive glass onto ultrafine-grained commercially pure titanium. The cladding process affected the refined structure of the substrate inducing martensitic transformation near its surface. The α' acicular martensite gradually passes into relatively large grains with increasing distance from the substrate surface, which subsequently are transformed into smaller grains of about 2 µm in diameter. Both the melted zone, where the martensite crystalline structure was found, and the HAZ are characterised by relatively lower hardness in comparison with that of the substrate core indicating increased ductility. Such a combination of zones with different properties may have a synergistic effect and is beneficial for the obtained biomaterial. A characteristic region in the form of about 3 µm width band was formed in the melted zone at about 10 µm below the titanium surface. The results of EDS analysis indicate that several glass elements moved into the region while the titanium content in the same area was decreased. High bioactivity of the coated S520 glass was revealed by in vitro testing with SBF solution and almost complete reduction of P concentration occurred after 14 days.


Asunto(s)
Vidrio , Titanio , Materiales Biocompatibles , Rayos Láser , Ensayo de Materiales , Propiedades de Superficie
16.
Int J Occup Saf Ergon ; 27(2): 620-632, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32576085

RESUMEN

Purpose. The purpose of this article was to determine how characteristics of bimanual coordination tasks affect the quality of performance and to determine the impact of these characteristics on muscular activation of the upper limbs, with consideration of age-related differences. Methods. The research was carried out on two groups consisting of 25 people aged 20-30 and 60-67 years. The subjects performed seven tasks that varied in coordination mode, tracking mode and outline-tracing. The main measures of task performance were calculated on the basis of the difference between the position of the target and tracing cursors. Cohen's d value was calculated to show differences in measures between groups. Results. There were higher values of error and variability measures for elderly people compared to young. Complex tasks showed the largest difficulty, which suggests that, when performed, such tasks have the greatest potential to improve coordination skills. Tasks during which both limbs contribute to the movement of one cursor proved the most appropriate. Conclusion. The tracking mode is of great importance for the quality of performance in motor coordination tasks, while the performance of tasks with imposed speed is much more strongly age-sensitive than performance with a freely chosen speed.


Asunto(s)
Movimiento , Desempeño Psicomotor , Anciano , Lateralidad Funcional , Humanos , Destreza Motora , Análisis y Desempeño de Tareas , Extremidad Superior
17.
Ultramicroscopy ; 218: 113093, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32920465

RESUMEN

Orientation mapping of quasicrystalline materials is demonstrated using crystalline approximant structures in the technique of electron backscatter diffraction (EBSD). The approximant-based orientations are symmetrised according to the rotational point group of the quasicrystal, including the visualization of orientation maps using proper colour keys for quasicrystal symmetries. Alternatively, approximant-based orientation data can also be treated using pseudosymmetry post-processing options in the EBSD system software, which enables basic grain size estimations. Approximant-based orientation analyses are demonstrated for icosahedral and decagonal quasicrystals.

18.
Ind Health ; 58(6): 503-519, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-32968038

RESUMEN

The aim of this study was to identify effective work place intervention strategies for the prevention of low back pain (LBP). The study focused on interventions to two major groups: personal interventions and technical interventions. Data basis were searched for with inclusion criteria: study design based on randomised controlled trial; outcome measures including non-specific LBP occurrence expressed by prevalence or intensity; intervention met the definition of the technical and/or personal (physical exercises, behavioural training, educational) intervention programme. Eighteen papers were selected for full analysis. The diversification of quantitative indicators of differences between control and intervention groups were carried out using Cohen's d index. The results of analysis showed strong differences in effects among intervention strategies, as well as among different cases within similar intervention strategies. LBP severity before intervention and the length of intervention were discussed as potentially influencing factors. The results of the analysis suggest that the most effective strategies for LBP prevention include technical modifications of the workstand and education based on practical training. Behavioural and physical training seems to be of lesser importance. LBP severity before intervention and the time when the measurements of outcome measures take place play an important role in the effectiveness of intervention.


Asunto(s)
Dolor de la Región Lumbar/prevención & control , Enfermedades Profesionales/prevención & control , Lugar de Trabajo , Terapia Conductista , Ergonomía , Ejercicio Físico , Humanos , Dolor de la Región Lumbar/terapia
19.
Materials (Basel) ; 13(12)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585868

RESUMEN

For the precise determination of orientations in polycrystalline materials, electron backscatter diffraction (EBSD) requires a consistent calibration of the diffraction geometry in the scanning electron microscope (SEM). In the present paper, the variation of the projection center for the Kikuchi diffraction patterns which are measured by EBSD is calibrated using a projective transformation model for the SEM beam scan positions on the sample. Based on a full pattern matching approach between simulated and experimental Kikuchi patterns, individual projection center estimates are determined on a subgrid of the EBSD map, from which least-square fits to affine and projective transformations can be obtained. Reference measurements on single-crystalline silicon are used to quantify the orientation errors which result from different calibration models for the variation of the projection center.

20.
J Appl Crystallogr ; 53(Pt 2): 435-443, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32280320

RESUMEN

A historical tool for crystallographic analysis is provided by the Hilton net, which can be used for manually surveying the crystal lattice as it is manifested by the Kikuchi bands in a gnomonic projection. For a quantitative analysis using the Hilton net, the projection centre as the relative position of the signal source with respect to the detector plane needs to be known. Interplanar angles are accessible with a precision and accuracy which is estimated to be ≤0.3°. Angles between any directions, e.g. zone axes, are directly readable. Finally, for the rare case of an unknown projection-centre position, its determination is demonstrated by adapting an old approach developed for photogrammetric applications. It requires the indexing of four zone axes [uvw] i in a backscattered Kikuchi diffraction pattern of a known phase collected under comparable geometric conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...