Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 95(44): 16144-16152, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37883715

RESUMEN

Real (electro)catalysts are often heterogeneous, and their activity and selectivity depend on the properties of specific active sites. Therefore, unveiling the so-called structure-activity relationship is essential for a rational search for better materials and, consequently, for the development of the field of (electro-)catalysis. Thus, spatially resolved techniques are powerful tools as they allow us to characterize and/or measure the activity and selectivity of different regions of heterogeneous catalysts. To take full advantage of that, we have developed spectroelectrochemical cells to perform spatially resolved analysis using X-ray nanoprobe synchrotron beamlines and conventional pieces of equipment. Here, we describe the techniques available at the Carnaúba beamline at the Sirius-LNLS storage ring, and then we show how our cells enable obtaining X-ray (XRF, XRD, XAS, etc.) and vibrational spectroscopy (FTIR and Raman) contrast images. Through some proof-of-concept experiments, we demonstrate how using a multi-technique approach could render a complete and detailed analysis of an (electro)catalyst overall performance.

2.
Chem Rev ; 123(6): 3160-3236, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36877871

RESUMEN

The performance and stability of metal halide perovskite solar cells strongly depend on precursor materials and deposition methods adopted during the perovskite layer preparation. There are often a number of different formation pathways available when preparing perovskite films. Since the precise pathway and intermediary mechanisms affect the resulting properties of the cells, in situ studies have been conducted to unravel the mechanisms involved in the formation and evolution of perovskite phases. These studies contributed to the development of procedures to improve the structural, morphological, and optoelectronic properties of the films and to move beyond spin-coating, with the use of scalable techniques. To explore the performance and degradation of devices, operando studies have been conducted on solar cells subjected to normal operating conditions, or stressed with humidity, high temperatures, and light radiation. This review presents an update of studies conducted in situ using a wide range of structural, imaging, and spectroscopic techniques, involving the formation/degradation of halide perovskites. Operando studies are also addressed, emphasizing the latest degradation results for perovskite solar cells. These works demonstrate the importance of in situ and operando studies to achieve the level of stability required for scale-up and consequent commercial deployment of these cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...