Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JID Innov ; 3(5): 100214, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37554517

RESUMEN

Tralokinumab, a fully human mAb specifically targeting the IL-13 cytokine, has demonstrated clinical efficacy and safety in patients with moderate-to-severe atopic dermatitis. Tralokinumab binds IL-13 with high affinity, which prevents the interaction of IL-13 with IL-13Rα1 and subsequent signaling. Similarly, tralokinumab-bound IL-13 cannot bind to IL-13Rα2, a proposed decoy receptor that is reported to bind IL-13 with extraordinarily high affinity. It has however not been fully elucidated to what extent tralokinumab interferes with the endogenous regulation of IL-13 through IL-13Rα2. In this mechanistic study, we used biophysical, biochemical, and cellular assays to investigate the effect of tralokinumab on the interaction between IL-13 and IL-13Rα1 and IL-13Rα2, respectively, as well as the effects on IL-13Rα2-mediated IL-13 internalization. We demonstrate that IL-13Rα2 binds IL-13 with exceptionally high affinity and that tralokinumab is unable to displace IL-13 from IL-13Rα2. In contrast to this, tralokinumab is able to disrupt the IL-13/IL-13Rα1 and IL-13Rα1/IL-13/IL-4Rα complex. Furthermore, we demonstrate that whereas the IL-13/tralokinumab complex is unable to bind IL-13Rα2, any IL-13 that is not bound by tralokinumab (i.e., free IL-13) can be bound by IL-13Rα2 and subsequently internalized, regardless of the presence of tralokinumab. In summary, our study indicates that tralokinumab does not interfere with endogenous IL-13Rα2-mediated regulation of free IL-13.

3.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34502507

RESUMEN

p38 and c-Jun N-terninal kinase (JNK) are activated in response to acute stress and inflammatory signals. Through modification of a plethora of substrates, these kinases profoundly re-shape cellular physiology for the optimal response to a harmful environment and/or an inflammatory state. Here, we utilized phospho-proteomics to identify several hundred substrates for both kinases. Our results indicate that the scale of signaling from p38 and JNK are of a similar magnitude. Among the many new targets, we highlight the regulation of the transcriptional regulators grb10-interacting GYF protein 1 and 2 (GIGYF1/2) by p38-dependent MAP kinase-activated protein kinase 2 (MK2) phosphorylation and 14-3-3 binding. We also show that the Golgi apparatus contains numerous substrates, and is a major target for regulation by p38 and JNK. When activated, these kinases mediate structural rearrangement of the Golgi apparatus, which positively affects protein flux through the secretory system. Our work expands on our knowledge about p38 and JNK signaling with important biological ramifications.


Asunto(s)
MAP Quinasa Quinasa 4/metabolismo , Estrés Fisiológico/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Aparato de Golgi/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa 4/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-jun/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
5.
J Immunol ; 203(8): 2291-2300, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31527197

RESUMEN

Tristetraprolin (TTP) is an RNA-binding protein and an essential factor of posttranscriptional repression of cytokine biosynthesis in macrophages. Its activity is temporally inhibited by LPS-induced p38MAPK/MAPKAPK2/3-mediated phosphorylation, leading to a rapid increase in cytokine expression. We compared TTP expression and cytokine production in mouse bone marrow-derived macrophages of different genotypes: wild type, MAPKAP kinase 2 (MK2) deletion (MK2 knockout [KO]), MK2/3 double deletion (MK2/3 double KO [DKO]), TTP-S52A-S178A (TTPaa) knock-in, as well as combined MK2 KO/TTPaa and MK2/3 DKO/TTPaa. The comparisons reveal that MK2/3 are the only LPS-induced kinases for S52 and S178 of TTP and the role of MK2 and MK3 in the regulation of TNF biosynthesis is not restricted to phosphorylation of TTP at S52/S178 but includes independent processes, which could involve other TTP phosphorylations (such as S316) or other substrates of MK2/3 or p38MAPK Furthermore, we found differences in the dependence of various cytokines on the cooperation between MK2/3 deletion and TTP mutation ex vivo. In the cecal ligation and puncture model of systemic inflammation, a dramatic decrease of cytokine production in MK2/3 DKO, TTPaa, and DKO/TTPaa mice compared with wild-type animals is observed, thus confirming the role of the MK2/3/TTP signaling axis in cytokine production also in vivo. These findings improve our understanding of this signaling axis and could be of future relevance in the treatment of inflammation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Citocinas/biosíntesis , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Ratones , Ratones Noqueados , Fosforilación , Proteínas Serina-Treonina Quinasas/deficiencia
6.
Genes Dev ; 33(11-12): 684-704, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31048545

RESUMEN

DNA double-strand breaks (DSBs) at RNA polymerase II (RNAPII) transcribed genes lead to inhibition of transcription. The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in transcription inhibition at DSBs by stimulating proteasome-dependent eviction of RNAPII at these lesions. How DNA-PK triggers RNAPII eviction to inhibit transcription at DSBs remains unclear. Here we show that the HECT E3 ubiquitin ligase WWP2 associates with components of the DNA-PK and RNAPII complexes and is recruited to DSBs at RNAPII transcribed genes. In response to DSBs, WWP2 targets the RNAPII subunit RPB1 for K48-linked ubiquitylation, thereby driving DNA-PK- and proteasome-dependent eviction of RNAPII. The lack of WWP2 or expression of nonubiquitylatable RPB1 abrogates the binding of nonhomologous end joining (NHEJ) factors, including DNA-PK and XRCC4/DNA ligase IV, and impairs DSB repair. These findings suggest that WWP2 operates in a DNA-PK-dependent shutoff circuitry for RNAPII clearance that promotes DSB repair by protecting the NHEJ machinery from collision with the transcription machinery.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Transformada , Línea Celular Tumoral , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación
7.
Cell Rep ; 26(13): 3511-3521.e4, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30917308

RESUMEN

Inflammatory signaling is restricted through degradation and the translational repression of cytokine mRNAs. A key factor in this regulation is tristetraprolin (TTP), an RNA-binding protein (RBP) that recruits RNA-destabilizing factors and the translation inhibitory complex 4EHP-GIGYF1/2 to AU-rich element (ARE)-containing mRNAs. Here, we show that the RBP ZNF598 contributes to the same regulatory module in a TTP-like manner. Similar to TTP, ZNF598 harbors three proline-rich motifs that bind the GYF domain of GIGYF1. RNA sequencing experiments showed that ZNF598 is required for the regulation of known TTP targets, including IL-8 and CSF2 mRNA. Furthermore, we demonstrate that ZNF598 binds to IL-8 mRNA, but not TNF mRNA. Collectively, our findings highlight that ZNF598 functions as an RBP that buffers the level of a range of mRNAs. We propose that ZNF598 is a TTP-like factor that can contribute to the regulation of the inflammatory potential of cytokine-producing cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Inflamación/metabolismo , Procesamiento Postranscripcional del ARN , Transducción de Señal , Tristetraprolina/metabolismo , Secuencias de Aminoácidos , Animales , Línea Celular Tumoral , Citocinas/metabolismo , Humanos , Inflamación/genética , Unión Proteica , ARN Mensajero/metabolismo
8.
Cells ; 7(7)2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932434

RESUMEN

Centriolar satellites (CS) are small proteinaceous granules that cluster around the centrosome and serve as cargo vehicles for centrosomal proteins. It is generally accepted that CS support a number of canonical and specialized centrosome functions. Consequently, these highly dynamic structures are the target of regulation by several cellular signalling pathways. Two decades of research have led to the identification of a large number of molecular components and new biological roles of CS. Here, we summarize the latest advances in the continuous efforts to uncover the compositional, functional, dynamic and regulatory aspects of CS. We also report on our discovery that osmotic stress conditions render CS immobile and insensitive to remodelling. Upon a range of p38-activating stimuli, MK2 phosphorylates the CS component CEP131, resulting in 14-3-3 binding and a block to CS formation. This normally manifests as a rapid cellular depletion of satellites. In the case of osmotic stress, a potent inducer of p38 activity, CS translocation and dissolution is blocked, with the net result that satellites persist in an immobile state directly adjacent to the centrosome. Our results highlight a unique scenario where p38 activation and CS depletion is uncoupled, with potential implications for physiological and pathological osmotic stress responses.

9.
Cell Rep ; 22(10): 2784-2796, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29514104

RESUMEN

Despite its low cellular abundance, phosphotyrosine (pTyr) regulates numerous cell signaling pathways in health and disease. We applied comprehensive phosphoproteomics to unravel differential regulators of receptor tyrosine kinase (RTK)-initiated signaling networks upon activation by Pdgf-ßß, Fgf-2, or Igf-1 and identified more than 40,000 phosphorylation sites, including many phosphotyrosine sites without additional enrichment. The analysis revealed RTK-specific regulation of hundreds of pTyr sites on key signaling molecules. We found the tyrosine phosphatase Shp-2 to be the master regulator of Pdgfr pTyr signaling. Application of a recently introduced allosteric Shp-2 inhibitor revealed global regulation of the Pdgf-dependent tyrosine phosphoproteome, which significantly impaired cell migration. In addition, we present a list of hundreds of Shp-2-dependent targets and putative substrates, including Rasa1 and Cortactin with increased pTyr and Gab1 and Erk1/2 with decreased pTyr. Our study demonstrates that large-scale quantitative phosphoproteomics can precisely dissect tightly regulated kinase-phosphatase signaling networks.


Asunto(s)
Fosfoproteínas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteómica , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Animales , Anticuerpos/metabolismo , Becaplermina/farmacología , Activación Enzimática , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Ligandos , Ratones , Células 3T3 NIH , Fosforilación , Fosfotirosina/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteoma/metabolismo
10.
Nat Commun ; 9(1): 1017, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523821

RESUMEN

Ultraviolet (UV) light radiation induces the formation of bulky photoproducts in the DNA that globally affect transcription and splicing. However, the signaling pathways and mechanisms that link UV-light-induced DNA damage to changes in RNA metabolism remain poorly understood. Here we employ quantitative phosphoproteomics and protein kinase inhibition to provide a systems view on protein phosphorylation patterns induced by UV light and uncover the dependencies of phosphorylation events on the canonical DNA damage signaling by ATM/ATR and the p38 MAP kinase pathway. We identify RNA-binding proteins as primary substrates and 14-3-3 as direct readers of p38-MK2-dependent phosphorylation induced by UV light. Mechanistically, we show that MK2 phosphorylates the RNA-binding subunit of the NELF complex NELFE on Serine 115. NELFE phosphorylation promotes the recruitment of 14-3-3 and rapid dissociation of the NELF complex from chromatin, which is accompanied by RNA polymerase II elongation.


Asunto(s)
Daño del ADN/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN/metabolismo , Rayos Ultravioleta/efectos adversos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Fosforilación , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo
11.
Nat Cell Biol ; 18(12): 1357-1366, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27820601

RESUMEN

DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose accurate repair by non-homologous end-joining (NHEJ) or homologous recombination (HR) is crucial for genome integrity and is strongly influenced by the local chromatin environment. Here, we identify SCAI (suppressor of cancer cell invasion) as a 53BP1-interacting chromatin-associated protein that promotes the functionality of several DSB repair pathways in mammalian cells. SCAI undergoes prominent enrichment at DSB sites through dual mechanisms involving 53BP1-dependent recruitment to DSB-surrounding chromatin and 53BP1-independent accumulation at resected DSBs. Cells lacking SCAI display reduced DSB repair capacity, hypersensitivity to DSB-inflicting agents and genome instability. We demonstrate that SCAI is a mediator of 53BP1-dependent repair of heterochromatin-associated DSBs, facilitating ATM kinase signalling at DSBs in repressive chromatin environments. Moreover, we establish an important role of SCAI in meiotic recombination, as SCAI deficiency in mice leads to germ cell loss and subfertility associated with impaired retention of the DMC1 recombinase on meiotic chromosomes. Collectively, our findings uncover SCAI as a physiologically important component of both NHEJ- and HR-mediated pathways that potentiates DSB repair efficiency in specific chromatin contexts.


Asunto(s)
Cromosomas de los Mamíferos/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Factores de Transcripción/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular , Línea Celular Transformada , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Células Germinativas/citología , Células Germinativas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Heterocromatina/metabolismo , Recombinación Homóloga/genética , Humanos , Meiosis , Ratones , Unión Proteica , Transducción de Señal , Xenopus
12.
Nat Cell Biol ; 18(11): 1196-1207, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27723717

RESUMEN

Activation of the ATR kinase following perturbations to DNA replication relies on a complex mechanism involving ATR recruitment to RPA-coated single-stranded DNA via its binding partner ATRIP and stimulation of ATR kinase activity by TopBP1. Here, we discovered an independent ATR activation pathway in vertebrates, mediated by the uncharacterized protein ETAA1 (Ewing's tumour-associated antigen 1). Human ETAA1 accumulates at DNA damage sites via dual RPA-binding motifs and promotes replication fork progression and integrity, ATR signalling and cell survival after genotoxic insults. Mechanistically, this requires a conserved domain in ETAA1 that potently and directly stimulates ATR kinase activity independently of TopBP1. Simultaneous loss of ETAA1 and TopBP1 gives rise to synthetic lethality characterized by massive genome instability and abrogation of ATR-dependent signalling. Our findings demonstrate that parallel TopBP1- and ETAA1-mediated pathways underlie ATR activation and that their combined action is essential for coping with replication stress.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Daño del ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Antígenos de Superficie/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/genética , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Fosforilación
13.
Nat Commun ; 6: 10075, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26616734

RESUMEN

Centriolar satellites (CS) are small granular structures that cluster in the vicinity of centrosomes. CS are highly susceptible to stress stimuli, triggering abrupt displacement of key CS factors. Here we discover a linear p38-MK2-14-3-3 signalling pathway that specifically targets CEP131 to trigger CS remodelling after cell stress. We identify CEP131 as a substrate of the p38 effector kinase MK2 and pinpoint S47 and S78 as critical MK2 phosphorylation sites in CEP131. Ultraviolet-induced phosphorylation of these residues generates direct binding sites for 14-3-3 proteins, which sequester CEP131 in the cytoplasm to block formation of new CS, thereby leading to rapid depletion of these structures. Mutating S47 and S78 in CEP131 is sufficient to abolish stress-induced CS reorganization, demonstrating that CEP131 is the key regulatory target of MK2 and 14-3-3 in these structures. Our findings reveal the molecular mechanism underlying dynamic CS remodelling to modulate centrosome functions on cell stress.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas 14-3-3/genética , Proteínas de Ciclo Celular/genética , Centriolos/enzimología , Centriolos/genética , Proteínas del Citoesqueleto , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Microtúbulos/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/genética
14.
Cell Mol Life Sci ; 72(1): 11-23, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25173771

RESUMEN

Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking towards the centrosome. However, the recent identification of several new centriolar satellite components suggests that this model offers only an incomplete picture of their cellular functions. While the mechanisms controlling centriolar satellite status and function are not yet understood in detail, emerging evidence points to these structures as important hubs for dynamic, multi-faceted regulation in response to a variety of cues. In this review, we summarize the current knowledge of the roles of centriolar satellites in regulating centrosome functions, ciliogenesis, and neurogenesis. We also highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases.


Asunto(s)
Centriolos/metabolismo , Centrosoma/fisiología , Cilios/fisiología , Neurogénesis/fisiología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA