Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 35(10): 1736-1751.e7, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37734370

RESUMEN

Muscle-residing regulatory T cells (Tregs) control local tissue integrity and function. However, the molecular interface connecting Treg-based regulation with muscle function and regeneration remains largely unexplored. Here, we show that exercise fosters a stable induction of highly functional muscle-residing Tregs with increased expression of amphiregulin (Areg), EGFR, and ST2. Mechanistically, we find that mice lacking IL6Rα on T cells (TKO) harbor significant reductions in muscle Treg functionality and satellite and fibro-adipogenic progenitor cells, which are required for muscle regeneration. Using exercise and sarcopenia models, IL6Rα TKO mice demonstrate deficits in Tregs, their functional maturation, and a more pronounced decline in muscle mass. Muscle injury models indicate that IL6Rα TKO mice have significant disabilities in muscle regeneration. Treg gain of function restores impaired muscle repair in IL6Rα TKO mice. Of note, pharmacological IL6R blockade in WT mice phenocopies deficits in muscle function identified in IL6Rα TKO mice, thereby highlighting the clinical implications of the findings.


Asunto(s)
Músculo Esquelético , Linfocitos T Reguladores , Ratones , Animales , Linfocitos T Reguladores/metabolismo , Músculo Esquelético/metabolismo , Transducción de Señal , Adipogénesis , Receptores de Interleucina-6/metabolismo
2.
J Lipid Res ; 58(12): 2324-2333, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29066466

RESUMEN

Diacylglycerol kinases (DGKs) regulate the balance between diacylglycerol (DAG) and phosphatidic acid. DGKζ is highly abundant in skeletal muscle and induces fiber hypertrophy. We hypothesized that DGKζ influences functional and metabolic adaptations in skeletal muscle and whole-body fuel utilization. DAG content was increased in skeletal muscle and adipose tissue, but unaltered in liver of DGKζ KO mice. Linear growth, body weight, fat mass, and lean mass were reduced in DGKζ KO versus wild-type mice. Conversely, male DGKζ KO and wild-type mice displayed a similar robust increase in plantaris weight after functional overload, suggesting that DGKζ is dispensable for muscle hypertrophy. Although glucose tolerance was similar, insulin levels were reduced in high-fat diet (HFD)-fed DGKζ KO versus wild-type mice. Submaximal insulin-stimulated glucose transport and p-Akt Ser473 were increased, suggesting enhanced skeletal muscle insulin sensitivity. Energy homeostasis was altered in DGKζ KO mice, as evidenced by an elevated respiratory exchange ratio, independent of altered physical activity or food intake. In conclusion, DGKζ deficiency increases tissue DAG content and leads to modest growth retardation, reduced adiposity, and protection against insulin resistance. DGKζ plays a role in the control of growth and metabolic processes, further highlighting specialized functions of DGK isoforms in type 2 diabetes pathophysiology.


Asunto(s)
Diacilglicerol Quinasa/genética , Metabolismo Energético/genética , Glucosa/metabolismo , Resistencia a la Insulina/genética , Insulina/metabolismo , Animales , Transporte Biológico , Diacilglicerol Quinasa/deficiencia , Dieta Alta en Grasa , Diglicéridos/metabolismo , Expresión Génica , Homeostasis/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético , Obesidad/etiología , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología
3.
Diabetes ; 64(2): 360-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25338814

RESUMEN

Methotrexate (MTX) is a widely used anticancer and antirheumatic drug that has been postulated to protect against metabolic risk factors associated with type 2 diabetes, although the mechanism remains unknown. MTX inhibits 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) and thereby slows the metabolism of 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranosyl-5'-monophosphate (ZMP) and its precursor AICAR, which is a pharmacological AMPK activator. We explored whether MTX promotes AMPK activation in cultured myotubes and isolated skeletal muscle. We found MTX markedly reduced the threshold for AICAR-induced AMPK activation and potentiated glucose uptake and lipid oxidation. Gene silencing of the MTX target ATIC activated AMPK and stimulated lipid oxidation in cultured myotubes. Furthermore, MTX activated AMPK in wild-type HEK-293 cells. These effects were abolished in skeletal muscle lacking the muscle-specific, ZMP-sensitive AMPK-γ3 subunit and in HEK-293 cells expressing a ZMP-insensitive mutant AMPK-γ2 subunit. Collectively, our findings underscore a role for AMPK as a direct molecular link between MTX and energy metabolism in skeletal muscle. Cotherapy with AICAR and MTX could represent a novel strategy to treat metabolic disorders and overcome current limitations of AICAR monotherapy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Peroxidación de Lípido , Metotrexato/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Línea Celular , Activación Enzimática/fisiología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Subunidades de Proteína
4.
Am J Physiol Endocrinol Metab ; 303(4): E524-33, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22693207

RESUMEN

The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL)) and wild-type littermates were studied. Glucose and insulin tolerance, glucose utilization, hepatic glucose production, and tissue-specific insulin-mediated glucose uptake were determined. The effect of insulin, AICAR, or contraction on glucose transport was studied in isolated skeletal muscle. Glucose and insulin tolerance tests were normal in TBC1D1-deficient Nob1.10(SJL) mice, yet the 4-h-fasted insulin concentration was increased. Insulin-stimulated peripheral glucose utilization during a euglycemic hyperinsulinemic clamp was similar between genotypes, whereas the suppression of hepatic glucose production was increased in TBC1D1-deficient mice. In isolated extensor digitorum longus (EDL) but not soleus muscle, glucose transport in response to insulin, AICAR, or contraction was impaired by TBC1D1 deficiency. The reduction in glucose transport in EDL muscle from TBC1D1-deficient Nob1.10(SJL) mice may be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice. In conclusion, TBC1D1 plays a role in regulation of glucose metabolism in skeletal muscle. Moreover, functional TBC1D1 is required for AICAR- or contraction-induced metabolic responses, implicating a role in energy-sensing signals.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Proteínas Nucleares/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Desoxiglucosa/metabolismo , Ayuno/sangre , Ayuno/metabolismo , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/fisiología , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 4/análisis , Hipoglucemiantes/farmacología , Insulina/sangre , Insulina/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Proteínas Nucleares/genética , Ribonucleótidos/farmacología , Transducción de Señal/efectos de los fármacos
5.
Am J Physiol Endocrinol Metab ; 297(6): E1388-94, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19826102

RESUMEN

Skeletal muscle glucose transport is regulated via the canonical insulin-signaling cascade as well as by energy-sensing signals. 5'-AMP-activated protein kinase (AMPK) has been implicated in the energy status regulation of glucose transport. We determined the role of the AMPKgamma3 isoform in hypoxia-mediated energy status signaling and glucose transport in fast-twitch glycolytic extensor digitorum longus (EDL) muscle from AMPKgamma3-knockout (KO) mice and wild-type mice. Although hypoxia increased glucose transport (P < 0.001) in wild-type mice, this effect was attenuated in AMPKgamma3-KO mice (45% reduction, P < 0.01). The role of Ca(2+)-mediated signaling was tested using the Ca(2+)/calmodulin competitive inhibitor KN-93. KN-93 exposure reduced hypoxia-mediated glucose transport in AMPKgamma3-KO and wild-type mice (P < 0.05). To further explore the underlying signaling mechanisms, phosphorylation of CaMKII, AMPK, ACC, and TBC1D1/D4 as well as isoform-specific AMPK activity was determined. Basal and hypoxia-mediated phosphorylation of CaMKII, AMPK, and ACC as well as alpha1- and alpha2-associated AMPK activity was comparable between AMPKgamma3-KO and wild-type mice. KN-93 reduced hypoxia-mediated CaMKII phosphorylation in AMPKgamma3-KO and wild-type mice (P < 0.05), whereas phosphorylation of AMPK and ACC as well as alpha1- and alpha2-associated AMPK activity was unaltered. Hypoxia increased TBC1D1/D4 phosphorylation in AMPKgamma3-KO and wild-type mice (P < 0.001). KN-93 exposure prevented this effect in AMPKgamma3-KO, but not in wild-type mice. Taken together, we provide direct evidence for a role of the AMPKgamma3 isoform in hypoxia-mediated glucose transport in glycolytic muscle. Moreover, hypoxia-mediated TBC1D1/D4 phosphorylation was uncoupled from glucose transport in AMPKgamma3-KO mice, indicating that TBC1D1/D4-independent mechanisms contribute to glucose transport in skeletal muscle.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Glucosa/metabolismo , Fibras Musculares de Contracción Rápida/metabolismo , Músculo Esquelético/metabolismo , Animales , Bencilaminas/farmacología , Transporte Biológico , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipoxia de la Célula/fisiología , Femenino , Proteínas Activadoras de GTPasa , Inmunohistoquímica , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Musculares de Contracción Rápida/enzimología , Músculo Esquelético/enzimología , Proteínas Nucleares/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Sulfonamidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA