Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 18: 1173-1181, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32514328

RESUMEN

The merit of RNASeq data relies heavily on correct normalization. However, most methods assume that the majority of transcripts show no differential expression between conditions. This assumption may not always be correct, especially when one condition results in overexpression. We present a new method (NormQ) to normalize the RNASeq library size, using the relative proportion observed from RT-qPCR of selected marker genes. The method was compared against the popular median-of-ratios method, using simulated and real-datasets. NormQ produced more matches to differentially expressed genes in the simulated dataset and more distribution profile matches for both simulated and real datasets.

2.
BMC Genomics ; 20(1): 815, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694542

RESUMEN

BACKGROUND: The study of the mechanisms controlling wound healing is an attractive area within the field of biology, with it having a potentially significant impact on the health sector given the current medical burden associated with healing in the elderly population. Healing is a complex process and includes many steps that are regulated by coding and noncoding RNAs, proteins and other molecules. Nitric oxide (NO) is one of these small molecule regulators and its function has already been associated with inflammation and angiogenesis during adult healing. RESULTS: Our results showed that NO is also an essential component during embryonic scarless healing and acts via a previously unknown mechanism. NO is mainly produced during the early phase of healing and it is crucial for the expression of genes associated with healing. However, we also observed a late phase of healing, which occurs for several hours after wound closure and takes place under the epidermis and includes tissue remodelling that is dependent on NO. We also found that the NO is associated with multiple cellular metabolic pathways, in particularly the glucose metabolism pathway. This is particular noteworthy as the use of NO donors have already been found to be beneficial for the treatment of chronic healing defects (including those associated with diabetes) and it is possible that its mechanism of action follows those observed during embryonic wound healing. CONCLUSIONS: Our study describes a new role of NO during healing, which may potentially translate to improved therapeutic treatments, especially for individual suffering with problematic healing.


Asunto(s)
Embrión no Mamífero/fisiología , Óxido Nítrico/metabolismo , Cicatrización de Heridas , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Leptina/metabolismo , Transducción de Señal , Xenopus laevis
3.
Sci Rep ; 8(1): 8315, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844480

RESUMEN

Asymmetric cell division is a ubiquitous feature during the development of higher organisms. Asymmetry is achieved by differential localization or activities of biological molecules such as proteins, and coding and non-coding RNAs. Here, we present subcellular transcriptomic and proteomic analyses along the animal-vegetal axis of Xenopus laevis eggs. More than 98% of the maternal mRNAs could be categorized into four localization profile groups: animal, vegetal, extremely vegetal, and a newly described group of mRNAs that we call extremely animal, which are mRNAs enriched in the animal cortex region. 3'UTRs of localized mRNAs were analyzed for localization motifs. Several putative motifs were discovered for vegetal and extremely vegetal mRNAs, while no distinct conserved motifs for the extremely animal mRNAs were identified, suggesting different localization mechanisms. Asymmetric profiles were also found for proteins, with correlation to those of corresponding mRNAs. Based on unexpected observation of the profiles of the homoeologous genes exd2 we propose a possible mechanism of genetic evolution.


Asunto(s)
Xenopus laevis/embriología , Regiones no Traducidas 3' , Animales , Femenino
4.
PLoS One ; 12(11): e0188584, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29182622

RESUMEN

Searching for new strategies for effective elimination of human prostate cancer cells, we investigated the cooperative cytotoxic action of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and two platinum-based complexes, cisplatin or LA-12, and related molecular mechanisms. We demonstrated a notable ability of cisplatin or LA-12 to enhance the sensitivity of several human prostate cancer cell lines to TRAIL-induced cell death via an engagement of mitochondrial apoptotic pathway. This was accompanied by augmented Bid cleavage, Bak activation, loss of mitochondrial membrane potential, activation of caspase-8, -10, -9, and -3, and XIAP cleavage. RNAi-mediated silencing of Bid or Bak in Bax-deficient DU 145 cells suppressed the drug combination-induced cytotoxicity, further underscoring the involvement of mitochondrial signaling. The caspase-10 was dispensable for enhancement of cisplatin/LA-12 and TRAIL combination-induced cell death and stimulation of Bid cleavage. Importantly, we newly demonstrated LA-12-mediated enhancement of TRAIL-induced cell death in cancer cells derived from human patient prostate tumor specimens. Our results provide convincing evidence that employing TRAIL combined with cisplatin/LA-12 could contribute to more effective killing of prostate cancer cells compared to the individual action of the drugs, and offer new mechanistic insights into their cooperative anticancer action.


Asunto(s)
Amantadina/análogos & derivados , Apoptosis/efectos de los fármacos , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Caspasa 10/metabolismo , Cisplatino/farmacología , Mitocondrias/efectos de los fármacos , Compuestos Organoplatinos/farmacología , Neoplasias de la Próstata/patología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Amantadina/farmacología , Humanos , Masculino , Mitocondrias/metabolismo , Neoplasias de la Próstata/metabolismo
5.
Biol Open ; 6(6): 862-871, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28483981

RESUMEN

Nitric oxide (NO) is a potent radical molecule that participates in various biological processes such as vasodilation, cell proliferation, immune response and neurotransmission. NO mainly activates soluble guanylate cyclase, leading to cGMP production and activation of protein kinase G and its downstream targets. Here we report the essential role of NO during embryonic epidermis development. Xenopus embryonic epidermis has become a useful model reflecting human epithelial tissue composition. The developing epidermis of Xenopus laevis is formed from specialized ionocytes, multi-ciliated, goblet and small secretory cells. We found that NO is mainly produced in multi-ciliated cells and ionocytes. Production of NO during early developmental stages is required for formation of multi-ciliated cells, ionocytes and small secretory cells by regulation of epidermal-specific gene expression. The data from this research indicate a novel role of NO during development, which supports recent findings of NO production in human mucociliary and epithelium development.

6.
Biomol Detect Quantif ; 5: 3-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27077037

RESUMEN

The precision and reliability of quantitative nucleic acid analysis depends on the quality of the sample analyzed and the integrity of the nucleic acids. The integrity of RNA is currently primarily assessed by the analysis of ribosomal RNA, which is the by far dominant species. The extrapolation of these results to mRNAs and microRNAs, which are structurally quite different, is questionable. Here we show that ribosomal and some nucleolar and mitochondrial RNAs, are highly resistant to naturally occurring post-mortem degradation, while mRNAs, although showing substantial internal variability, are generally much more prone to nucleolytic degradation. In contrast, all types of RNA show the same sensitivity to heat. Using qPCR assays targeting different regions of mRNA molecules, we find no support for 5' or 3' preferentiality upon post-mortem degradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA