Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 49(8): 2589-2609, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32031186

RESUMEN

Novel dibasic Schiff bases with three tridentate sites were obtained from the condensation of the triketone 2,4,6-triacetylphloroglucinol (H3ptk) with four different hydrazides, benzoyl hydrazide (bhz), furoyl hydrazide (fah), isonicotinoyl hydrazide (inh) and nicotinoyl hydrazide (nah): H6ptk(bhz)3I, H6ptk(fah)3II, H6ptk(inh)3III and H6ptk(nah)3IV. These ligand precursors I-IV, each being an ONO donor, are tricompartmental building blocks able to form trinuclear complexes having C3 symmetry. The reaction of I-IV with [VIVO(acac)2] leads to the formation of [{VIVO(H2O)}3(ptk(bhz)3)] 1, [{VIVO(H2O)}3(ptk(fah)3)] 2, [{VIVO(H2O)}3(ptk(inh)3)] 3, and [{VIVO(H2O)}3(ptk(nah)3)] 4. In methanol/aqueous solutions of M2CO3 (M+ = Na+, K+ and Cs+), these complexes are slowly converted into dioxidovanadium(v) compounds, namely, M3[(VVO2)3{ptk(bhz)3}]·6H2O [M+ = K+5, Na+9, Cs+13], M3[(VVO2)3{ptk(fah)3}]·6H2O [M+ = K+6, Na+10, Cs+14], M3[(VVO2)3{ptk(inh)3}]·6H2O [M+ = K+7, Na+11, Cs+15] and M3[(VVO2)3{ptk(nah)3}]·6H2O [M+ = K+8, Na+12, Cs+16]. All ligand precursors and complexes are characterized by various techniques such as FT-IR, UV/Visible, EPR, NMR (1H, 13C and 51V), elemental analysis, thermal studies, cyclic voltammetry (CV) and single-crystal X-ray analysis. X-ray diffraction studies of complexes K2.7[{(VVO2)3ptk(fah)3}]·11.5H2O·MeOH 6a, Cs3[{(VVO2)3ptk(bhz)3}]·7H2O 13a and Cs3[{(VVO2)3ptk(nah)3}]·7.3H2O 16a reveal their distorted square pyramidal geometry by coordinating through phenolate oxygen (of ptk), azomethine nitrogen and enolate oxygen (of hydrazide) atoms. The reactivity of complexes 5-16 and their catalytic potential were screened towards their peroxidase mimetic activity in the oxidation of dopamine to aminochrome driven by H2O2 as an oxidant. The conversion of dopamine to aminochrome with different catalysts was monitored by HPLC showing high activity under mild conditions with good conversions within 1 h. Kinetic studies using compounds 13-16 as catalyst precursors reveal that the reaction follows a Michaelis-Menten-like kinetics.


Asunto(s)
Dopamina/metabolismo , Peróxido de Hidrógeno/metabolismo , Indolquinonas/metabolismo , Peroxidasas/metabolismo , Floroglucinol/química , Compuestos de Vanadio/farmacología , Vanadio/química , Biomimética , Catálisis , Humanos , Ligandos , Oxidación-Reducción , Compuestos de Vanadio/química
2.
RSC Adv ; 9(18): 10405-10413, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35520888

RESUMEN

We hereby report the synthesis, characterization and catalytic applications in the epoxidation of alkenes by a vanadyl porphyrin having bulky bromo substituents at the ß-positions viz. vanandyltetrabromotetraphenylporphyrin (1). The synthesized porphyrin was characterized by various spectroscopic techniques like UV-visible, FT-IR, EPR, MALDI-TOF mass spectrometry and single crystal X-ray analysis. Porphyrin 1 has a nonplanar structure as indicated by its X-ray structure, DFT and electrochemical studies. 1 was analyzed for its catalytic application in the epoxidation of various alkenes. The catalytic reactions were carried out in CH3CN/H2O mixture in 3 : 1 (v/v) ratio. 1 displayed good efficiency in terms of mild reaction conditions, lower reaction temperature and minimal catalyst amount consumption. 1 exhibited excellent selectivity, high conversion efficiency and huge TOF (7600-9800 h-1) in a significantly low reaction time of 0.5 h. Catalyst 1 was regenerated at the end of various catalytic cycles making it reusable and industrially important.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA