Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (152)2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31736489

RESUMEN

The blood brain barrier (BBB) is an important defense against the entrance of potentially toxic or pathogenic agents from the blood into the central nervous system (CNS). However, its existence also dramatically lowers the accessibility of systemically administered therapeutic agents to the CNS. One method to overcome this, is to inject those agents directly into the cerebrospinal fluid (CSF), thus bypassing the BBB. This can be done via implantation of a catheter for either continuous infusion using an osmotic pump, or for single bolus delivery. In this article, we describe a surgical protocol for delivery of CNS-targeting antisense oligonucleotides (ASOs) via a catheter implanted directly into the cauda equina space of the adult rat spine. As representative results, we show the efficacy of a single bolus ASO intrathecal (IT) injection via this catheterization system in knocking down the target RNA in different regions of the rat CNS. The procedure is safe, effective and does not require expensive equipment or surgical tools. The technique described here can be adapted to deliver drugs in other modalities as well.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Cateterismo/métodos , Sistema Nervioso Central/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Inyecciones Espinales/métodos , Oligonucleótidos Antisentido/administración & dosificación , Animales , Transporte Biológico , Femenino , Masculino , Ratas , Ratas Sprague-Dawley
2.
Cell Rep ; 14(5): 1000-1009, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26804915

RESUMEN

Mutations in a number of chromatin modifiers are associated with human neurological disorders. KDM5C, a histone H3 lysine 4 di- and tri-methyl (H3K4me2/3)-specific demethylase, is frequently mutated in X-linked intellectual disability (XLID) patients. Here, we report that disruption of the mouse Kdm5c gene recapitulates adaptive and cognitive abnormalities observed in XLID, including impaired social behavior, memory deficits, and aggression. Kdm5c-knockout brains exhibit abnormal dendritic arborization, spine anomalies, and altered transcriptomes. In neurons, Kdm5c is recruited to promoters that harbor CpG islands decorated with high levels of H3K4me3, where it fine-tunes H3K4me3 levels. Kdm5c predominantly represses these genes, which include members of key pathways that regulate the development and function of neuronal circuitries. In summary, our mouse behavioral data strongly suggest that KDM5C mutations are causal to XLID. Furthermore, our findings suggest that loss of KDM5C function may impact gene expression in multiple regulatory pathways relevant to the clinical phenotypes.


Asunto(s)
Genes Ligados a X , Histonas/metabolismo , Discapacidad Intelectual/genética , Agresión , Animales , Encéfalo/patología , Islas de CpG , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Histona Demetilasas , Lisina/metabolismo , Memoria , Metilación , Ratones Noqueados , Oxidorreductasas N-Desmetilantes/deficiencia , Oxidorreductasas N-Desmetilantes/metabolismo , Regiones Promotoras Genéticas , Conducta Social , Transcripción Genética
3.
Trends Cell Biol ; 26(2): 135-147, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26442841

RESUMEN

The evolutionary success of the vertebrate nervous system is largely due to a unique structural feature--the myelin sheath, a fatty envelope that surrounds the axons of neurons. By increasing the speed by which electrical signals travel along axons, myelin facilitates neuronal communication between distant regions of the nervous system. We review the cellular and molecular mechanisms that regulate the development of myelin as well as its homeostasis in adulthood. We discuss how finely tuned neuron-oligodendrocyte interactions are central to myelin formation during development and in the adult, and how these interactions can have profound implications for the plasticity of the adult brain. We also speculate how the functional diversity of both neurons and oligodendrocytes may impact on the myelination process in both health and disease.


Asunto(s)
Vaina de Mielina/metabolismo , Neuronas/metabolismo , Adulto , Animales , Axones/metabolismo , Axones/fisiología , Evolución Biológica , Humanos , Oligodendroglía/metabolismo , Oligodendroglía/fisiología , Transmisión Sináptica/fisiología
4.
Neuron ; 88(3): 475-83, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26539889

RESUMEN

During development of the cerebral cortex, local GABAergic interneurons recognize and pair with excitatory projection neurons to ensure the fine excitatory-inhibitory balance essential for proper circuit function. Whether the class-specific identity of projection neurons has a role in the establishment of afferent inhibitory synapses is debated. Here, we report that direct in vivo lineage reprogramming of layer 2/3 (L2/3) callosal projection neurons (CPNs) into induced corticofugal projection neurons (iCFuPNs) increases inhibitory input onto the converted neurons to levels similar to that of endogenous CFuPNs normally found in layer 5 (L5). iCFuPNs recruit increased numbers of inhibitory perisomatic synapses from parvalbumin (PV)-positive interneurons, with single-cell precision and despite their ectopic location in L2/3. The data show that individual reprogrammed excitatory projection neurons extrinsically modulate afferent input by local PV(+) interneurons, suggesting that projection neuron class-specific identity can actively control the wiring of the cortical microcircuit.


Asunto(s)
Cuerpo Calloso/fisiología , Neocórtex/fisiología , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Animales , Cuerpo Calloso/citología , Ratones , Ratones Transgénicos , Neocórtex/citología , Red Nerviosa/citología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Técnicas de Cultivo de Órganos
5.
Wiley Interdiscip Rev Dev Biol ; 4(5): 529-44, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25926310

RESUMEN

Since Ramon y Cajal's examination of the cellular makeup of the cerebral cortex, it has been appreciated that this tissue exhibits some of the greatest degrees of cellular heterogeneity in the entire nervous system. This intricate structure emerges during a well-choreographed developmental process. Here, we review current classifications of the cellular constituents of the cerebral cortex and examine how these building blocks are forged during development. We also look at how basic developmental features underlying cortex formation in vivo have been applied to protocols aimed at generating cortical tissue in vitro.


Asunto(s)
Corteza Cerebral/embriología , Neurogénesis , Animales , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/clasificación , Neuronas/citología , Neuronas/metabolismo
6.
Front Cell Neurosci ; 8: 201, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25120430

RESUMEN

Since monumental studies from scientists like His, Ramón y Cajal, Lorente de Nó and many others have put down roots for modern neuroscience, the scientific community has spent a considerable amount of time, and money, investigating any possible aspect of the evolution, development and function of neurons. Today, the complexity and diversity of myriads of neuronal populations, and their progenitors, is still focus of extensive studies in hundreds of laboratories around the world. However, our prevalent neuron-centric perspective has dampened the efforts in understanding glial cells, even though their active participation in the brain physiology and pathophysiology has been increasingly recognized over the years. Among all glial cells of the central nervous system (CNS), oligodendrocytes (OLs) are a particularly specialized type of cells that provide fundamental support to neuronal activity by producing the myelin sheath. Despite their functional relevance, the developmental mechanisms regulating the generation of OLs are still poorly understood. In particular, it is still not known whether these cells share the same degree of heterogeneity of their neuronal companions and whether multiple subtypes exist within the lineage. Here, we will review and discuss current knowledge about OL development and function in the brain and spinal cord. We will try to address some specific questions: do multiple OL subtypes exist in the CNS? What is the evidence for their existence and those against them? What are the functional features that define an oligodendrocyte? We will end our journey by reviewing recent advances in human pluripotent stem cell differentiation towards OLs. This exciting field is still at its earliest days, but it is quickly evolving with improved protocols to generate functional OLs from different spatial origins. As stem cells constitute now an unprecedented source of human OLs, we believe that they will become an increasingly valuable tool for deciphering the complexity of human OL identity.

7.
J Neurochem ; 131(1): 115-27, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24978323

RESUMEN

Rett syndrome (RTT, MIM312750), a neurodevelopmental disorder predominantly occurring in females, is caused in the majority of cases by sporadic mutations in the gene encoding the transcriptional modulator methyl-CpG-binding protein 2 (MECP2). In mice, impaired MeCP2 function results in severe motor, cognitive, and emotional defects. The lack of Mecp2 in γ-aminobutyric acid-(GABA) releasing forebrain interneurons (INs) recapitulate many RTT features, however, the role of this gene in the development of the cortical inhibitory system is still unknown. Here, we found that MeCP2 expression varies among the three major classes of cortical INs and its nuclear localization differs between neuronal types. The density of calretinin(+) and parvalbumin(+) INs increases in Mecp2 knockout mice (Mecp2(-/y) ) already at early post-natal developmental stages. In contrast, the density of somatostatin(+) INs is not affected. We also found that the development of multipolar-calretinin(+) INs is selectively affected by the absence of Mecp2. Additionally, we show that in Mecp2 heterozygous female mice, a model closely mimicking human RTT condition, IN abnormalities are similar to those observed in Mecp2(-/y) mice. Together, our study indicates that loss of function of Mecp2 strongly interferes with the correct establishment of the neocortical inhibitory system producing effects that are specific to different IN subtypes.


Asunto(s)
Modelos Animales de Enfermedad , Interneuronas/patología , Proteína 2 de Unión a Metil-CpG/deficiencia , Síndrome de Rett/patología , Corteza Somatosensorial/patología , Animales , Animales Recién Nacidos , Femenino , Interneuronas/metabolismo , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Corteza Somatosensorial/crecimiento & desarrollo , Corteza Somatosensorial/metabolismo
8.
Science ; 344(6181): 319-24, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24744380

RESUMEN

Myelin is a defining feature of the vertebrate nervous system. Variability in the thickness of the myelin envelope is a structural feature affecting the conduction of neuronal signals. Conversely, the distribution of myelinated tracts along the length of axons has been assumed to be uniform. Here, we traced high-throughput electron microscopy reconstructions of single axons of pyramidal neurons in the mouse neocortex and built high-resolution maps of myelination. We find that individual neurons have distinct longitudinal distribution of myelin. Neurons in the superficial layers displayed the most diversified profiles, including a new pattern where myelinated segments are interspersed with long, unmyelinated tracts. Our data indicate that the profile of longitudinal distribution of myelin is an integral feature of neuronal identity and may have evolved as a strategy to modulate long-distance communication in the neocortex.


Asunto(s)
Vaina de Mielina/fisiología , Neocórtex/citología , Células Piramidales/fisiología , Corteza Somatosensorial/citología , Corteza Visual/citología , Animales , Axones/fisiología , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Neocórtex/fisiología , Oligodendroglía/citología , Oligodendroglía/fisiología , Células Piramidales/citología , Corteza Somatosensorial/fisiología , Corteza Visual/fisiología
9.
Neuron ; 73(5): 911-24, 2012 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-22405202

RESUMEN

The positioning of neurons in the cerebral cortex is of crucial importance for its function as highlighted by the severe consequences of migrational disorders in patients. Here we show that genetic deletion of the small GTPase RhoA in the developing cerebral cortex results in two migrational disorders: subcortical band heterotopia (SBH), a heterotopic cortex underlying the normotopic cortex, and cobblestone lissencephaly, in which neurons protrude beyond layer I at the pial surface of the brain. Surprisingly, RhoA(-/-) neurons migrated normally when transplanted into wild-type cerebral cortex, whereas the converse was not the case. Alterations in the radial glia scaffold are demonstrated to cause these migrational defects through destabilization of both the actin and the microtubules cytoskeleton. These data not only demonstrate that RhoA is largely dispensable for migration in neurons but also showed that defects in radial glial cells, rather than neurons, can be sufficient to produce SBH.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/fisiología , Neuroglía/metabolismo , Neuronas/fisiología , Proteína de Unión al GTP rhoA/deficiencia , Factores de Edad , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Movimiento Celular , Proliferación Celular , Corteza Cerebral/embriología , Corteza Cerebral/trasplante , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/metabolismo , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/patología , Modelos Animales de Enfermedad , Electroporación , Embrión de Mamíferos , Células Madre Embrionarias/fisiología , Células Madre Embrionarias/trasplante , Femenino , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/fisiología , Neuronas/metabolismo , Neuronas/ultraestructura , Embarazo , Tinción con Nitrato de Plata , Proteína de Unión al GTP rhoA/genética
10.
J Neurosci ; 31(12): 4650-62, 2011 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-21430164

RESUMEN

In rodents, cortical interneurons originate from the medial ganglionic eminence (MGE) and caudal ganglionic eminence (CGE) according to precise temporal schedules. The mechanisms controlling the specification of CGE-derived interneurons and their role in cortical circuitry are still unknown. Here, we show that COUP-TFI expression becomes restricted to the dorsal MGE and CGE at embryonic day 13.5 in the basal telencephalon. Conditional loss of function of COUP-TFI in subventricular precursors and postmitotic cells leads to a decrease of late-born, CGE-derived, VIP (vasoactive intestinal peptide)- and CR (calretinin)-expressing bipolar cortical neurons, compensated by the concurrent increase of early-born MGE-derived, PV (parvalbumin)-expressing interneurons. Strikingly, COUP-TFI mutants are more resistant to pharmacologically induced seizures, a phenotype that is dependent on GABAergic signaling. Together, our data indicate that COUP-TFI controls the delicate balance between MGE- and CGE-derived cortical interneurons by regulating intermediate progenitor divisions and ultimately affecting the activity of the cortical inhibitory circuitry.


Asunto(s)
Factor de Transcripción COUP I/genética , Factor de Transcripción COUP I/fisiología , Corteza Cerebral/fisiología , Epilepsia/genética , Epilepsia/fisiopatología , Interneuronas/fisiología , Eminencia Media/fisiología , Animales , Antimetabolitos , Bromodesoxiuridina , Proliferación Celular , Corteza Cerebral/citología , Convulsivantes/farmacología , Resistencia a Medicamentos/genética , Electroencefalografía , Fenómenos Electrofisiológicos , Epilepsia/inducido químicamente , Inmunohistoquímica , Hibridación in Situ , Eminencia Media/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/citología , Red Nerviosa/fisiología , Receptores de GABA-A/genética , Receptores de GABA-A/fisiología , Receptores de GABA-B/genética , Receptores de GABA-B/fisiología , Telencéfalo/citología , Telencéfalo/fisiología , Ácido gamma-Aminobutírico/fisiología
11.
Sci Prog ; 93(Pt 2): 151-69, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20681320

RESUMEN

The idea of repairing damaged neuronal circuitry in the mammalian central nervous system (CNS) has challenged neuroscientists for centuries. This is mainly due to the notorious inability of neurons to regenerate and the unparalleled cellular diversity of the nervous system. In the mammalian cerebral cortex, one of the most complex areas of the CNS, multipotent neural stem and progenitor cells undergo progressive specification during development to generate the staggering variety of projection neuron subtypes that are found in the adult. How is this process orchestrated in the embryo? And, can developmental signals be used to regenerate projection neuron subtypes in the adult or in the dish? Here, we first provide an overview of the diversity and fate potential of neural progenitors of the cerebral cortex during development. Further, we discuss the plasticity of neural progenitors and the roles of intrinsic and extrinsic signals over progenitor fate. Finally, we discuss the relevance of developmental signals for efforts to direct the differentiation of pluripotent stem cells into specific types of cortical projection neurons for therapeutic benefit.


Asunto(s)
Corteza Cerebral/citología , Neuronas/citología , Neuronas/fisiología , Animales , Desarrollo Embrionario , Regeneración Nerviosa , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología
12.
Proc Natl Acad Sci U S A ; 107(8): 3576-81, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20133588

RESUMEN

Transcription factors with gradients of expression in neocortical progenitors give rise to distinct motor and sensory cortical areas by controlling the area-specific differentiation of distinct neuronal subtypes. However, the molecular mechanisms underlying this area-restricted control are still unclear. Here, we show that COUP-TFI controls the timing of birth and specification of corticospinal motor neurons (CSMN) in somatosensory cortex via repression of a CSMN differentiation program. Loss of COUP-TFI function causes an area-specific premature generation of neurons with cardinal features of CSMN, which project to subcerebral structures, including the spinal cord. Concurrently, genuine CSMN differentiate imprecisely and do not project beyond the pons, together resulting in impaired skilled motor function in adult mice with cortical COUP-TFI loss-of-function. Our findings indicate that COUP-TFI exerts critical areal and temporal control over the precise differentiation of CSMN during corticogenesis, thereby enabling the area-specific functional features of motor and sensory areas to arise.


Asunto(s)
Factor de Transcripción COUP I/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas Motoras/citología , Neurogénesis/genética , Tractos Piramidales/citología , Lóbulo Temporal/crecimiento & desarrollo , Animales , Factor de Transcripción COUP I/genética , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Tractos Piramidales/metabolismo , Lóbulo Temporal/metabolismo , Tálamo/crecimiento & desarrollo , Tálamo/metabolismo
13.
Cereb Cortex ; 18(9): 2117-31, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18165280

RESUMEN

A major unsolved question in cortical development is how proliferation, neurogenesis, regional growth, regional identity, and laminar fate specification are coordinated. Here we provide evidence, using loss-of-function and gain-of-function manipulations, that the COUP-TFI orphan nuclear receptor promotes ventral cortical fate, promotes cell cycle exit and neural differentiation, regulates the balance of early- and late-born neurons, and regulates the balanced production of different types of layer V cortical projection neurons. We suggest that COUP-TFI controls these processes by repressing Mapk/Erk, Akt, and beta-catenin signaling.


Asunto(s)
Factor de Transcripción COUP I/genética , Factor de Transcripción COUP I/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Neocórtex/embriología , Neocórtex/fisiología , beta Catenina/metabolismo , Animales , División Celular/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neocórtex/citología , Neuronas/citología , Neuronas/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Madre/citología , Células Madre/fisiología
14.
Nat Neurosci ; 10(10): 1277-86, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17828260

RESUMEN

We used cortex-specific deletion of the transcription factor gene COUP-TFI (also known as Nr2f1) in mice to demonstrate previously unknown fundamental roles for it in patterning mammalian neocortex into areas. The highest COUP-TFI expression is observed in the cortical progenitors and progeny in parietal and occipital cortex that form sensory areas, and the lowest expression was observed in frontal cortex that includes motor areas. Cortical deletion of COUP-TFI resulted in massive expansion of frontal areas, including motor, to occupy most of neocortex, paralleled by marked compression of sensory areas to caudal occipital cortex. These area patterning changes are preceded and paralleled by corresponding changes in molecular markers of area identity and altered axonal projections to maintain patterned area-specific input and output connections. We conclude that COUP-TFI is required for balancing patterning of neocortex into frontal/motor and sensory areas by acting in its expression domain to repress frontal/motor area identities and to specify sensory area identities.


Asunto(s)
Tipificación del Cuerpo/fisiología , Factor de Transcripción COUP I/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Corteza Motora/embriología , Corteza Somatosensorial/embriología , Animales , Tipificación del Cuerpo/genética , Factor de Transcripción COUP I/genética , Embrión de Mamíferos , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Corteza Motora/citología , Corteza Motora/metabolismo , Vías Nerviosas/citología , Vías Nerviosas/embriología , Vías Nerviosas/metabolismo , Factor de Transcripción PAX2/metabolismo , Serotonina/metabolismo , Corteza Somatosensorial/metabolismo , Factores de Transcripción/metabolismo
15.
J Neurochem ; 88(6): 1533-9, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15009654

RESUMEN

Spontaneous and potassium-induced acetylcholine release from embryonic (E12 and E18) chick dorsal root ganglia explants at 3 and 7 days in culture was investigated using a chemiluminescent procedure. A basal release ranging from 2.4 to 13.8 pm/ganglion/5 min was detected. Potassium application always induced a significant increase over the basal release. The acetylcholine levels measured in E12 explants were 6.3 and 38.4 pm/ganglion/5 min at 3 and 7 days in culture, respectively, while in E18 explant cultures they were 10.7 and 15.5 pm/ganglion/5 min. In experiments performed in the absence of extracellular Ca2+ ions, acetylcholine release, both basal and potassium-induced, was abolished and it was reduced by cholinergic antagonists. A morphometric analysis of explant fibre length suggested that acetylcholine release was directly correlated to neurite extension. Moreover, treatment of E12 dorsal root ganglion-dissociated cell cultures with carbachol as cholinergic receptor agonist was shown to induce a higher neurite outgrowth compared with untreated cultures. The concomitant treatment with carbachol and the antagonists at muscarinic receptors atropine and at nicotinic receptors mecamylamine counteracted the increase in fibre outgrowth. Although the present data have not established whether acetylcholine is released by neurones or glial cells, these observations provide the first evidence of a regulated release of acetylcholine in dorsal root ganglia.


Asunto(s)
Acetilcolina/metabolismo , Ganglios Espinales/metabolismo , Potasio/farmacología , Animales , Calcio/metabolismo , Embrión de Pollo , Técnicas de Cultivo , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/embriología , Mediciones Luminiscentes , Neuritas/efectos de los fármacos , Neuritas/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...