Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
Commun Biol ; 7(1): 195, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38366025

The Ketogenic Diet (KD) improves memory and longevity in aged C57BL/6 mice. We tested 7 months KD vs. control diet (CD) in the mouse Alzheimer's Disease (AD) model APP/PS1. KD significantly rescued Long-Term-Potentiation (LTP) to wild-type levels, not by changing Amyloid-ß (Aß) levels. KD's 'main actor' is thought to be Beta-Hydroxy-butyrate (BHB) whose levels rose significantly in KD vs. CD mice, and BHB itself significantly rescued LTP in APP/PS1 hippocampi. KD's 6 most significant pathways induced in brains by RNAseq all related to Synaptic Plasticity. KD induced significant increases in synaptic plasticity enzymes p-ERK and p-CREB in both sexes, and of brain-derived neurotrophic factor (BDNF) in APP/PS1 females. We suggest KD rescues LTP through BHB's enhancement of synaptic plasticity. LTP falls in Mild-Cognitive Impairment (MCI) of human AD. KD and BHB, because they are an approved diet and supplement respectively, may be most therapeutically and translationally relevant to the MCI phase of Alzheimer's Disease.


Alzheimer Disease , Diet, Ketogenic , Humans , Mice , Animals , Aged , Long-Term Potentiation , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Mice, Transgenic , Mice, Inbred C57BL , Neuronal Plasticity
2.
FASEB J ; 37(11): e23261, 2023 11.
Article En | MEDLINE | ID: mdl-37878335

Fatty acids are metabolized by ß-oxidation within the "mitochondrial ketogenic pathway" (MKP) to generate ß-hydroxybutyrate (BHB), a ketone body. BHB can be generated by most cells but largely by hepatocytes following exercise, fasting, or ketogenic diet consumption. BHB has been shown to modulate systemic and brain inflammation; however, its direct effects on microglia have been little studied. We investigated the impact of BHB on Aß oligomer (AßO)-stimulated human iPS-derived microglia (hiMG), a model relevant to the pathogenesis of Alzheimer's disease (AD). HiMG responded to AßO with proinflammatory activation, which was mitigated by BHB at physiological concentrations of 0.1-2 mM. AßO stimulated glycolytic transcripts, suppressed genes in the ß-oxidation pathway, and induced over-expression of AD-relevant p46Shc, an endogenous inhibitor of thiolase, actions that are expected to suppress MKP. AßO also triggered mitochondrial Ca2+ increase, mitochondrial reactive oxygen species production, and activation of the mitochondrial permeability transition pore. BHB potently ameliorated all the above mitochondrial changes and rectified the MKP, resulting in reduced inflammasome activation and recovery of the phagocytotic function impaired by AßO. These results indicate that microglia MKP can be induced to modulate microglia immunometabolism, and that BHB can remedy "keto-deficiency" resulting from MKP suppression and shift microglia away from proinflammatory mitochondrial metabolism. These effects of BHB may contribute to the beneficial effects of ketogenic diet intervention in aged mice and in human subjects with mild AD.


Alzheimer Disease , Microglia , Humans , Animals , Mice , 3-Hydroxybutyric Acid/pharmacology , Amyloid beta-Peptides , Ketone Bodies , Inflammation
3.
Cell Mol Gastroenterol Hepatol ; 15(1): 197-211, 2023.
Article En | MEDLINE | ID: mdl-36122677

BACKGROUND & AIMS: Src homology and collagen (Shc) proteins are major adapters to extracellular signals, however, the regulatory role of Shc isoforms in sterile inflammatory responses in alcoholic hepatitis (AH) has not been fully investigated. We hypothesized that in an isoform-specific manner Shc modulates pre-apoptotic signals, calreticulin (CRT) membrane exposure, and recruitment of inflammatory cells. METHODS: Liver biopsy samples from patients with AH vs healthy subjects were studied for Shc expression using DNA microarray data and immunohistochemistry. Shc knockdown (hypomorph) and age-matched wild-type mice were pair-fed according to the chronic-plus-binge alcohol diet. To analyze hepatocyte-specific effects, adeno-associated virus 8-thyroxine binding globulin-Cre (hepatocyte-specific Shc knockout)-mediated deletion was performed in flox/flox Shc mice. Lipid peroxidation, proinflammatory signals, redox radicals, reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide ratio, as well as cleaved caspase 8, B-cell-receptor-associated protein 31 (BAP31), Bcl-2-associated X protein (Bax), and Bcl-2 homologous antagonist killer (Bak), were assessed in vivo. CRT translocation was studied in ethanol-exposed p46ShcẟSH2-transfected hepatocytes by membrane biotinylation in conjunction with phosphorylated-eukaryotic initiation factor 2 alpha, BAP31, caspase 8, and Bax/Bak. The effects of idebenone, a novel Shc inhibitor, was studied in alcohol/pair-fed mice. RESULTS: Shc was significantly induced in patients with AH (P < .01). Alanine aminotransferase, reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide ratios, production of redox radicals, and lipid peroxidation improved (P < .05), and interleukin 1ß, monocyte chemoattractant protein 1, and C-X-C chemokine ligand 10 were reduced in Shc knockdown and hepatocyte-specific Shc knockout mice. In vivo, Shc-dependent induction, and, in hepatocytes, a p46Shc-dependent increase in pre-apoptotic proteins Bax/Bak, caspase 8, BAP31 cleavage, and membrane translocation of CRT/endoplasmic reticulum-resident protein 57 were seen. Idebenone protected against alcohol-mediated liver injury. CONCLUSIONS: Alcohol induces p46Shc-dependent activation of pre-apoptotic pathways and translocation of CRT to the membrane, where it acts as a damage-associated molecular pattern, instigating immunogenicity. Shc inhibition could be a novel treatment strategy in AH.


Hepatitis, Alcoholic , Mice , Animals , bcl-2-Associated X Protein , Caspase 8 , Calreticulin , NAD , Mice, Knockout , Ethanol , Inflammation , Collagen
4.
J Biochem Mol Toxicol ; 35(10): e22876, 2021 Oct.
Article En | MEDLINE | ID: mdl-34369032

Shc expression rises in human nonalcoholic steatohepatitis (NASH) livers, and Shc-deficient mice are protected from NASH-thus Shc inhibition could be a novel therapeutic strategy for NASH. Idebenone was recently identified as the first small-molecule Shc inhibitor drug. We tested idebenone in the fibrotic methionine-choline deficient (MCD) diet and the metabolic fast food diet (FFD) mouse models of NASH. In the fibrotic MCD NASH model, idebenone reduced Shc expression and phosphorylation in peripheral blood mononuclear cells and Shc expression in the liver; decreased serum alanine aminotransferase and aspartate aminotransferase; and attenuated liver fibrosis as observed by quantitative polymerase chain reaction (qPCR) and hydroxyproline quantification. In the metabolic FFD model, idebenone administration improved insulin resistance, and reduced inflammation and fibrosis shown with qPCR, hydroxyproline measurement, and histology. Thus, idebenone ameliorates NASH in two mouse models. As an approved drug with a benign safety profile, Idebenone could be a reasonable human NASH therapy.


Diet/adverse effects , Liver Cirrhosis/drug therapy , Liver Cirrhosis/etiology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Protective Agents/administration & dosage , Shc Signaling Adaptor Proteins/antagonists & inhibitors , Shc Signaling Adaptor Proteins/metabolism , Signal Transduction/drug effects , Ubiquinone/analogs & derivatives , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Choline Deficiency/complications , Disease Models, Animal , Fast Foods/adverse effects , Leukocytes, Mononuclear/metabolism , Liver/injuries , Liver/metabolism , Liver Cirrhosis/blood , Liver Cirrhosis/complications , Male , Methionine/deficiency , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/complications , Phosphorylation/drug effects , Therapeutics , Ubiquinone/administration & dosage
5.
Pharmaceuticals (Basel) ; 13(12)2020 Nov 24.
Article En | MEDLINE | ID: mdl-33255358

Glioblastoma (GBM) is an aggressive tumor of the brain, with an average post-diagnosis survival of 15 months. GBM stem cells (GBMSC) resist the standard-of-care therapy, temozolomide, and are considered a major contributor to tumor resistance. Mammalian target of rapamycin Complex 1 (mTORC1) regulates cell proliferation and has been shown by others to have reduced activity in GBMSC. We recently identified a novel chemical series of human-safe piperazine-based brain-penetrant mTORC1-specific inhibitors. We assayed the piperazine-mTOR binding strength by two biophysical measurements, biolayer interferometry and field-effect biosensing, and these confirmed each other and demonstrated a structure-activity relationship. As mTORC1 is altered in human GBMSC, and as mTORC1 inhibitors have been tested in previous GBM clinical trials, we tested the killing potency of the tightest-binding piperazines and observed that these were potent GBMSC killers. GBMSCs are resistant to the standard-of-care temozolomide therapy, but temozolomide supplemented with tight-binding piperazine meclizine and flunarizine greatly enhanced GBMSC death over temozolomide alone. Lastly, we investigated IDH1-mutated GBMSC mutations that are known to affect mitochondrial and mTORC1 metabolism, and the tight-binding meclizine provoked 'synthetic lethality' in IDH1-mutant GBMSCs. In other words, IDH1-mutated GBMSC showed greater sensitivity to the coadministration of temozolomide and meclizine. These data tend to support a novel clinical strategy for GBM, i.e., the co-administration of meclizine or flunarizine as adjuvant therapy in the treatment of GBM and IDH1-mutant GBM.

6.
Biomed Pharmacother ; 132: 110823, 2020 Dec.
Article En | MEDLINE | ID: mdl-33045613

There has been little innovation in identifying novel insulin sensitizers. Metformin, developed in the 1920s, is still used first for most Type 2 diabetes patients. Mice with genetic reduction of p52Shc protein have improved insulin sensitivity and glucose tolerance. By high-throughput screening, idebenone was isolated as the first small molecule 'Shc Blocker'. Idebenone blocks p52Shc's access to Insulin Receptor to increase insulin sensitivity. In this work the avidity of 34 novel idebenone analogs and 3 metabolites to bind p52Shc, and to block the interaction of p52Shc with the Insulin receptor was tested. Our hypothesis was that if an idebenone analog bound and blocked p52Shc's access to insulin receptor better than idebenone, it should be a more effective insulin sensitizing agent than idebenone itself. Of 34 analogs tested, only 2 both bound p52Shc more tightly and/or blocked the p52Shc-Insulin Receptor interaction more effectively than idebenone. Of those 2 only idebenone analog #11 was a superior insulin sensitizer to idebenone. Also, the long-lasting insulin-sensitizing potency of idebenone in rodents over many hours had been puzzling, as the parent molecule degrades to metabolites within 1 h. We observed that two of the idebenone's three metabolites are insulin sensitizing almost as potently as idebenone itself, explaining the persistent insulin sensitization of this rapidly metabolized molecule. These results help to identify key SAR = structure-activity relationship requirements for more potent small molecule Shc inhibitors as Shc-targeted insulin sensitizers for type 2 diabetes.


Diabetes Mellitus, Type 2/drug therapy , Receptor, Insulin/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , Ubiquinone/analogs & derivatives , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/physiopathology , Insulin/metabolism , Insulin Resistance , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Ubiquinone/chemistry , Ubiquinone/pharmacology
7.
Hepatology ; 72(4): 1204-1218, 2020 10.
Article En | MEDLINE | ID: mdl-31950520

BACKGROUND AND AIMS: Older patients with obesity/type II diabetes mellitus frequently present with advanced NASH. Whether this is due to specific molecular pathways that accelerate fibrosis during aging is unknown. Activation of the Src homology 2 domain-containing collagen-related (Shc) proteins and redox stress have been recognized in aging; however, their link to NASH has not been explored. APPROACH AND RESULTS: Shc expression increased in livers of older patients with NASH, as assessed by real time quantitative PCR (RT-qPCR) or western blots. Fibrosis, Shc expression, markers of senescence, and nicotinamide adenine dinucleotide phosphate, reduced form oxidases (NOXs) were studied in young/old mice on fast food diet (FFD). To inhibit Shc in old mice, lentiviral (LV)-short hairpin Shc versus control-LV were used during FFD. For hepatocyte-specific effects, floxed (fl/fl) Shc mice on FFD were injected with adeno-associated virus 8-thyroxine-binding globulin-Cre-recombinase versus control. Fibrosis was accelerated in older mice on FFD, and Shc inhibition by LV in older mice or hepatocyte-specific deletion resulted in significantly improved inflammation, reduction in senescence markers in older mice, lipid peroxidation, and fibrosis. To study NOX2 activation, the interaction of p47phox (NOX2 regulatory subunit) and p52Shc was evaluated by proximity ligation and coimmunoprecipitations. Palmitate-induced p52Shc binding to p47phox , activating the NOX2 complex, more so at an older age. Kinetics of binding were assessed in Src homology 2 domain (SH2) or phosphotyrosine-binding (PTB) domain deletion mutants by biolayer interferometry, revealing the role of SH2 and the PTB domains. Lastly, an in silico model of p52Shc/p47phox interaction using RosettaDock was generated. CONCLUSIONS: Accelerated fibrosis in the aged is modulated by p52Shc/NOX2. We show a pathway for direct activation of the phagocytic NOX2 in hepatocytes by p52Shc binding and activating the p47phox subunit that results in redox stress and accelerated fibrosis in the aged.


Aging/metabolism , NADPH Oxidase 2/physiology , Non-alcoholic Fatty Liver Disease/etiology , Animals , Hepatocytes/metabolism , Humans , Liver Cirrhosis/etiology , Male , Mice , Mice, Inbred C57BL , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Shc Signaling Adaptor Proteins/antagonists & inhibitors , Shc Signaling Adaptor Proteins/physiology , src Homology Domains
8.
Mitochondrion ; 50: 19-24, 2020 01.
Article En | MEDLINE | ID: mdl-31654752

AMP-activated protein kinase (AMPK) is a eukaryotic energy sensor and protector from mitochondrial/energetic stress that is also a therapeutic target for cancer and metabolic disease. Metformin is an AMPK inducer that has been used in cancer therapeutic trials. Through screening we isolated cetylpyridinium chloride (CPC), a drug known to dose-dependently inhibit mitochondrial complex 1, as a potent and dose-dependent AMPK stimulator. Mitochondrial biogenesis and bioenergetics changes have also been implicated in glioblastoma, which is the most aggressive form of brain tumors. Cetylpyridinium chloride has been administered in humans as a safe drug-disinfectant for several decades, and we report here that under in vitro conditions, cetylpyridinium chloride kills glioblastoma cells in a dose dependent manner at a higher efficacy compared to current standard of care drug, temozolomide.


Adenylate Kinase/metabolism , Antineoplastic Agents/pharmacology , Cetylpyridinium/pharmacology , Hepatocytes/drug effects , Neoplastic Stem Cells/drug effects , Animals , Anti-Infective Agents, Local/pharmacology , Cell Line , Cell Survival , Glioma/drug therapy , Humans , Mice
9.
Pharmacol Res ; 137: 89-103, 2018 11.
Article En | MEDLINE | ID: mdl-30290222

When insulin binds insulin receptor, IRS1 signaling is stimulated to trigger the maximal insulin response. p52Shc protein competes directly with IRS1, thus damping and diverting maximal insulin response. Genetic reduction of p52Shc minimizes competition with IRS1, and improves insulin signaling and glucose control in mice, and improves pathophysiological consequences of hyperglycemia. Given the multiple benefits of Shc reduction in vivo, we investigated whether any of 1680 drugs used in humans may function as Shc inhibitors, and thus potentially serve as novel anti-diabetics. Of the 1680, 30 insulin sensitizers were identified by screening in vitro, and of these 30 we demonstrated that 7 bound Shc protein. Of the 7 drugs, idebenone dose-dependently bound Shc protein in the 50-100 nM range, and induced insulin sensitivity and cytoprotection in this same 100 nM range that clinically dosed idebenone reaches in human plasma. By contrast we observe mitochondrial effects of idebenone in the 5,000 nM range that are not reached in human dosing. Multiple assays of target engagement demonstrate that idebenone physically interacts with Shc protein. Idebenone sensitizes mice to insulin in two different mouse models of prediabetes. Genetic depletion of idebenone's target eliminates idebenone's ability to insulin-sensitize in vivo. Thus, idebenone is the first-in-class member of a novel category of insulin-sensitizing and cytoprotective agents, the Shc inhibitors. Idebenone is an approved drug and could be considered for other indications such as type 2 diabetes and fatty liver disease, in which insulin resistance occurs.


Hypoglycemic Agents/pharmacology , Insulin Resistance , Src Homology 2 Domain-Containing, Transforming Protein 1/antagonists & inhibitors , Ubiquinone/analogs & derivatives , Animals , Cell Line , Cytoprotection , Diabetes Mellitus, Experimental/drug therapy , Drug Repositioning , Female , High-Throughput Screening Assays , Humans , Insulin/pharmacology , Male , Mice, Inbred C57BL , Mice, Knockout , Molecular Docking Simulation , Receptor, Insulin/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Ubiquinone/pharmacology
10.
Biochem Pharmacol ; 155: 298-304, 2018 09.
Article En | MEDLINE | ID: mdl-30028993

Inhibition of mTOR activity (mechanistic target of rapamycin) is an anti-cancer therapeutic strategy. mTOR participates in two functional complexes, mTORC1 and mTORC2. Since mTORC1 is specifically activated in multiple tumors, novel molecules that inhibit mTORC1 could be therapeutically important. To identify potentially novel modulators of mTOR pathways, we screened 1600 small molecule human drugs for mTOR protein binding, using novel biolayer interferometry technology. We identified several small molecules that bound to mTOR protein in a dose-dependent manner, on multiple chemical scaffolds. As mTOR participates in two major complexes, mTORC1 and mTORC2, the functional specificities of the binders were measured by S6Kinase and Akt phosphorylation assays. Three novel 'mTOR general' binders were identified, carvedilol, testosterone propionate, and hydroxyprogesterone, which inhibited both mTORC1 and mTORC2. By contrast, the piperazine drug cinnarizine dose-dependently inhibited mTORC1 but not mTORC2, suggesting it as a novel mTORC1-specific inhibitor. Some of cinnarizine's chemical analogs also inhibited mTORC1 specifically, whereas others did not. Thus we report the existence of a novel target for some related piperazines including cinnarizine and hydroxyzine, i.e. specific inhibition of mTORC1 activity. Since mTOR inhibition is a general anti-cancer strategy, and mTORC1 is specifically activated in some tumors, we suggest the piperazine scaffold, including cinnarizine and hydroxyzine, could be proposed for rational therapy in tumors in which mTORC1 is specifically activated. Related piperazines have shown toxicity to cancer cells in vitro as single agents and in combination chemotherapy. Thus piperazine-based mTOR inhibitors could become a novel chemotherapeutic strategy.


Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Animals , Carvedilol/metabolism , Carvedilol/pharmacology , Cinnarizine/metabolism , Cinnarizine/pharmacology , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Mice , Protein Binding/drug effects , Protein Binding/physiology , Sirolimus/metabolism , Sirolimus/pharmacology
12.
Cell Metab ; 26(3): 539-546.e5, 2017 Sep 05.
Article En | MEDLINE | ID: mdl-28877457

Calorie restriction, without malnutrition, has been shown to increase lifespan and is associated with a shift away from glycolysis toward beta-oxidation. The objective of this study was to mimic this metabolic shift using low-carbohydrate diets and to determine the influence of these diets on longevity and healthspan in mice. C57BL/6 mice were assigned to a ketogenic, low-carbohydrate, or control diet at 12 months of age and were either allowed to live their natural lifespan or tested for physiological function after 1 or 14 months of dietary intervention. The ketogenic diet (KD) significantly increased median lifespan and survival compared to controls. In aged mice, only those consuming a KD displayed preservation of physiological function. The KD increased protein acetylation levels and regulated mTORC1 signaling in a tissue-dependent manner. This study demonstrates that a KD extends longevity and healthspan in mice.


Diet, Ketogenic , Health , Longevity/physiology , Acetylation , Adaptation, Physiological , Animals , Diet, Carbohydrate-Restricted , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Inbred C57BL , Organ Specificity , Signal Transduction
13.
Environ Health Perspect ; 125(8): 087015, 2017 08 22.
Article En | MEDLINE | ID: mdl-28885978

BACKGROUND: Quaternary ammonium salts (QUATS), such as cetylpyridinium chloride (CPC) and benzalkonium chloride (BAK), are frequently used in antiseptic formulations, including toothpastes, mouthwashes, lozenges, throat and nasal sprays, and as biocides. Although in a recent ruling, the U.S. Food and Drug Administration (FDA) banned CPC from certain products and requested more data on BAK's efficacy and safety profile, QUATS, in general, and CPC and BAK, in particular, continue to be used in personal health care, food, and pharmaceutical and cleaning industries. OBJECTIVES: We aimed to assess CPC's effects on mitochondrial toxicity and endocrine disruption in vitro. METHOD: Mitochondrial O2 consumption and adenosine triphosphate (ATP) synthesis rates of osteosarcoma cybrid cells were measured before and after CPC and BAK treatment. Antiestrogenic effects of the compounds were measured by a luciferase-based assay using recombinant human breast carcinoma cells (VM7Luc4E2, ERalpha-positive). RESULTS: CPC inhibited both mitochondrial O2 consumption [half maximal inhibitory concentration (IC50): 3.8µM] and ATP synthesis (IC50: 0.9µM), and additional findings supported inhibition of mitochondrial complex 1 as the underlying mechanism for these effects. In addition, CPC showed concentration-dependent antiestrogenic activity half maximal effective concentration [(EC50): 4.5µM)]. BAK, another antimicrobial QUATS that is structurally similar to CPC, and the pesticide rotenone, a known complex 1 inhibitor, also showed mitochondrial inhibitory and antiestrogenic effects. In all three cases, there was overlap of the antiestrogenic activity with the mitochondrial inhibitory activity. CONCLUSIONS: Mitochondrial inhibition in vitro occurred at a CPC concentration that may be relevant to human exposures. The antiestrogenic activity of CPC, BAK, rotenone, and triclosan may be related to their mitochondrial inhibitory activity. Our findings support the need for additional research on the mitochondrial inhibitory and antiestrogenic effects of QUATS, including CPC and BAK. https://doi.org/10.1289/EHP1404.


Anti-Infective Agents, Local/toxicity , Cetylpyridinium/toxicity , Cell Line, Tumor , Humans , Mitochondria/drug effects
14.
PLoS One ; 12(6): e0177761, 2017.
Article En | MEDLINE | ID: mdl-28586369

ErbB (Erythroblastic Leukemia Viral Oncogene Homolog) receptor tyrosine kinases are critical for tissue development and maintenance, and frequently become oncogenic when mutated or overexpressed. In vitro analysis of ErbB receptor kinases can be difficult because of their large size and poor water solubility. Here we report improved production and assembly of the correctly folded full-length EGF receptor (EGFR) into nanolipoprotein particles (NLPs). NLPs are ~10 nm in diameter discoidal cell membrane mimics composed of apolipoproteins surrounding a lipid bilayer. NLPs containing EGFR were synthesized via incubation of baculovirus-produced recombinant EGFR with apolipoprotein and phosphoplipids under conditions that favor self-assembly. The resulting EGFR-NLPs were the correct size, formed dimers and multimers, had intrinsic autophosphorylation activity, and retained the ability to interact with EGFR-targeted ligands and inhibitors consistent with previously-published in vitro binding affinities. We anticipate rapid adoption of EGFR-NLPs for structural studies of full-length receptors and drug screening, as well as for the in vitro characterization of ErbB heterodimers and disease-relevant mutants.


ErbB Receptors/chemistry , ErbB Receptors/genetics , Lipid Bilayers/chemistry , Nanoparticles/chemistry , Apolipoproteins/biosynthesis , Apolipoproteins/chemistry , ErbB Receptors/administration & dosage , Humans , Membranes, Artificial , Nanoparticles/administration & dosage , Solubility , Water/chemistry
15.
FASEB J ; 30(12): 4202-4213, 2016 12.
Article En | MEDLINE | ID: mdl-27630169

Macrophage activation is an important feature of primary biliary cholangitis (PBC) pathogenesis and other cholestatic liver diseases. Galectin-3 (Gal3), a pleiotropic lectin, is produced by monocytic cells and macrophages. However, its role in PBC has not been addressed. We hypothesized that Gal3 is a key to induce NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in macrophages and in turn to propagate proinflammatory IL-17 signaling. In liver tissues from patients with PBC and dnTGF-ßRII mice, a model of autoimmune cholangitis, the expression of Gal3, NLRP3, and the adaptor protein adaptor apoptosis-associated speck-like protein was induced, with the downstream activation of caspase-1 and IL-1ß. In wild-type hepatic macrophages, deoxycholic acid induced the association of Gal3 and NLRP3 with direct activation of the inflammasome, resulting in an increase in IL-1ß. Downstream retinoid-related orphan receptor C mRNA, IL-17A, and IL-17F were induced. In Gal3-/- macrophages, no inflammasome activation was detected. To confirm the key role of Gal3 in the pathogenesis of cholestatic liver injury, we generated dnTGF-ßRII/galectin-3-/- (dn/Gal3-/-) mice, which showed impaired inflammasome activation along with significantly improved inflammation and fibrosis. Taken together, our data point to a novel role of Gal3 as an initiator of inflammatory signaling in autoimmune cholangitis, mediating the activation of NLRP3 inflammasome and inducing IL-17 proinflammatory cascades. These studies provide a rationale to target Gal3 in autoimmune cholangitis and potentially other cholestatic diseases.-Tian, J., Yang, G., Chen, H.-Y., Hsu, D. K., Tomilov, A., Olson, K. A., Dehnad, A., Fish, S. R., Cortopassi, G., Zhao, B., Liu, F.-T., Gershwin, M. E., Török, N. J., Jiang, J. X. Galectin-3 regulates inflammasome activation in cholestatic liver injury.


Galectin 3/metabolism , Inflammasomes/metabolism , Liver/metabolism , Macrophages/metabolism , Signal Transduction/physiology , Animals , Caspase 1/metabolism , Cells, Cultured , Galectin 3/genetics , Humans , Interleukin-17/metabolism , Interleukin-23/metabolism , Liver/injuries , Macrophage Activation/physiology , Mice, Transgenic , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
16.
Mitochondrion ; 30: 177-86, 2016 09.
Article En | MEDLINE | ID: mdl-27497748

Inherited mitochondrial complex I mutations cause blinding Leber's hereditary optic neuropathy (LHON), for which no curative therapy exists. A specific biochemical consequence of LHON mutations in the presence of trace rotenone was observed: deficient complex I-dependent ATP synthesis (CIDAS) and mitochondrial O2 consumption, proportional to the clinical severity of the three primary LHON mutations. We optimized a high-throughput assay of CIDAS to screen 1600 drugs to 2, papaverine and zolpidem, which protected CIDAS in LHON cells concentration-dependently. TSPO and cAMP were investigated as protective mechanisms, but a conclusive mechanism remains to be elucidated; next steps include testing in animal models.


Adenosine Triphosphate/biosynthesis , Electron Transport Complex I/metabolism , Metabolic Networks and Pathways/drug effects , Optic Atrophy, Hereditary, Leber/drug therapy , Papaverine/metabolism , Pyridines/metabolism , Cell Line , Drug Evaluation, Preclinical , Humans , Zolpidem
17.
J Biol Chem ; 291(24): 12575-12585, 2016 Jun 10.
Article En | MEDLINE | ID: mdl-27059956

Although the p46Shc isoform has been known to be mitochondrially localized for 11 years, its function in mitochondria has been a mystery. We confirmed p46Shc to be mitochondrially localized and showed that the major mitochondrial partner of p46Shc is the lipid oxidation enzyme 3-ketoacylCoA thiolase ACAA2, to which p46Shc binds directly and with a strong affinity. Increasing p46Shc expression inhibits, and decreasing p46Shc stimulates enzymatic activity of thiolase in vitro Thus, we suggest p46Shc to be a negative mitochondrial thiolase activity regulator, and reduction of p46Shc expression activates thiolase. This is the first demonstration of a protein that directly binds and controls thiolase activity. Thiolase was thought previously only to be regulated by metabolite balance and steady-state flux control. Thiolase is the last enzyme of the mitochondrial fatty acid beta-oxidation spiral, and thus is important for energy metabolism. Mice with reduction of p46Shc are lean, resist obesity, have higher lipid oxidation capacity, and increased thiolase activity. The thiolase-p46Shc connection shown here in vitro and in organello may be an important underlying mechanism explaining the metabolic phenotype of Shc-depleted mice in vivo.


Acetyl-CoA C-Acyltransferase/metabolism , Lipid Metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Shc Signaling Adaptor Proteins/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Acetyl-CoA C-Acyltransferase/genetics , Animals , Binding, Competitive , Blotting, Western , Cell Line , Energy Metabolism , Fatty Acids/metabolism , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondrial Proteins/genetics , NIH 3T3 Cells , Oxidation-Reduction , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Interference , Shc Signaling Adaptor Proteins/genetics , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics
18.
Biochem Biophys Rep ; 7: 273-286, 2016 Sep.
Article En | MEDLINE | ID: mdl-28133633

Shc proteins play a role in energy metabolism through interaction with the insulin receptor. The aim of this study was to determine whether Shc proteins influence liver glycolysis and gluconeogenesis under both fed and fasted states. Decreased glycolytic and increased gluconeogenic and transamination enzyme activities were observed in ShcKO versus WT mice. Levels of key regulatory metabolites, such as fructose-2,6-bisphosphate, matched the activity of metabolic pathways. Protein levels of glycolytic and gluconeogenic enzymes were not different. pAMPK protein levels increased with fasting and were higher in ShcKO versus WT mice. Therefore, Shc proteins play a role in shifting the metabolism from glucose oxidation to gluconeogenesis and lipid catabolism and should be considered as regulators of fuel selection. Fuel selection and utilization could play a critical role in healthy aging. Characterization of metabolic events in ShcKO mice would help to elucidate how metabolism is influenced by these proteins.

19.
PLoS One ; 10(4): e0124204, 2015.
Article En | MEDLINE | ID: mdl-25880638

Shc proteins interact with the insulin receptor, indicating a role in regulating glycolysis. To investigate this idea, the activities of key glycolytic regulatory enzymes and metabolites levels were measured in skeletal muscle from mice with low levels of Shc proteins (ShcKO) and wild-type (WT) controls. The activities of hexokinase, phosphofructokinase-1 and pyruvate kinase were decreased in ShcKO versus WT mice under both fed and fasted conditions. Increased alanine transaminase and branched-chain amino acid transaminase activities were also observed in ShcKO mice under both fed and fasting conditions. Protein expression of glycolytic enzymes was unchanged in the ShcKO and WT mice, indicating that decreased activities were not due to changes in their transcription. Changes in metabolite levels were consistent with the observed changes in enzyme activities. In particular, the levels of fructose-2,6-bisphosphate, a potent activator of phosphofructokinase-1, were consistently decreased in the ShcKO mice. Furthermore, the levels of lactate (inhibitor of hexokinase and phosphofructokinase-1) and citrate (inhibitor of phosphofructokinase-1 and pyruvate kinase) were increased in fed and fasted ShcKO versus WT mice. Pyruvate dehydrogenase activity was lower in ShcKO versus WT mice under fed conditions, and showed inhibition under fasting conditions in both ShcKO and WT mice, with ShcKO mice showing less inhibition than the WT mice. Pyruvate dehydrogenase kinase 4 levels were unchanged under fed conditions but were lower in the ShcKO mice under fasting conditions. These studies indicate that decreased levels of Shc proteins in skeletal muscle lead to a decreased glycolytic capacity in both fed and fasted states.


Glycolysis , Muscle, Skeletal/enzymology , Shc Signaling Adaptor Proteins/genetics , Animals , Gene Knockdown Techniques , Glucose/metabolism , Glycogen/metabolism , Mice , Mice, Inbred C57BL , Pyruvate Dehydrogenase Complex/metabolism
20.
Aging Cell ; 13(6): 1049-58, 2014 Dec.
Article En | MEDLINE | ID: mdl-25257068

Adipose tissue is an important metabolic organ that integrates a wide array of homeostatic processes and is crucial for whole-body insulin sensitivity and energy metabolism. Brown adipose tissue (BAT) is a key thermogenic tissue with a well-established role in energy expenditure. BAT dissipates energy and protects against both hypothermia and obesity. Thus, BAT stimulation therapy is a rational strategy for the looming pandemic of obesity, whose consequences and comorbidities have a huge impact on the aged. Shc-deficient mice (ShcKO) were previously shown to be lean, insulin sensitive, and resistant to high-fat diet and obesity. We investigated the contribution of BAT to this phenotype. Insulin-dependent BAT glucose uptake was higher in ShcKO mice. Primary ShcKO BAT cells exhibited increased mitochondrial respiration; increased expression of several mitochondrial and lipid-oxidative enzymes was observed in ShcKO BAT. Levels of brown fat-specific markers of differentiation, UCP1, PRDM16, ELOVL3, and Cox8b, were higher in ShcKO BAT. In vitro, Shc knockdown in BAT cell line increased insulin sensitivity and metabolic activity. In vivo, pharmacological stimulation of ShcKO BAT resulted in higher energy expenditure. Conversely, pharmacological inhibition of BAT abolished the improved metabolic parameters, that is the increased insulin sensitivity and glucose tolerance of ShcKO mice. Similarly, in vitro Shc knockdown in BAT cell lines increased their expression of UCP1 and metabolic activity. These data suggest increased BAT activity significantly contributes to the improved metabolic phenotype of ShcKO mice.


Adipose Tissue, Brown/metabolism , Shc Signaling Adaptor Proteins/deficiency , Shc Signaling Adaptor Proteins/metabolism , Animals , Energy Metabolism , Mice , Mice, Knockout , Thermogenesis/physiology
...