Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 13(1): 8033, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198194

RESUMEN

Given the associated risks with transcatheter aortic valve replacement (TAVR), it is crucial to determine how the implant will affect the valve dynamics and cardiac function, and if TAVR will improve or worsen the outcome of the patient. Effective treatment strategies, indeed, rely heavily on the complete understanding of the valve dynamics. We developed an innovative Doppler-exclusive non-invasive computational framework that can function as a diagnostic tool to assess valve dynamics in patients with aortic stenosis in both pre- and post-TAVR status. Clinical Doppler pressure was reduced by TAVR (52.2 ± 20.4 vs. 17.3 ± 13.8 [mmHg], p < 0.001), but it was not always accompanied by improvements in valve dynamics and left ventricle (LV) hemodynamics metrics. TAVR had no effect on LV workload in 4 patients, and LV workload post-TAVR significantly rose in 4 other patients. Despite the group level improvements in maximum LV pressure (166.4 ± 32.2 vs 131.4 ± 16.9 [mmHg], p < 0.05), only 5 of the 12 patients (41%) had a decrease in LV pressure. Moreover, TAVR did not always improve valve dynamics. TAVR did not necessarily result in a decrease (in 9 out of 12 patients investigated in this study) in major principal stress on the aortic valve leaflets which is one of the main contributors in valve degeneration and, consequently, failure of heart valves. Diastolic stresses increased significantly post-TAVR (34%, 109% and 81%, p < 0.001) for each left, right and non-coronary leaflets respectively. Moreover, we quantified the stiffness and material properties of aortic valve leaflets which correspond with the reduced calcified region average stiffness among leaflets (66%, 74% and 62%; p < 0.001; N = 12). Valve dynamics post-intervention should be quantified and monitored to ensure the improvement of patient conditions and prevent any further complications. Improper evaluation of biomechanical valve features pre-intervention as well as post-intervention may result in harmful effects post-TAVR in patients including paravalvular leaks, valve degeneration, failure of TAVR and heart failure.


Asunto(s)
Estenosis de la Válvula Aórtica , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/cirugía , Resultado del Tratamiento , Hemodinámica
3.
Med Image Anal ; 87: 102795, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37060702

RESUMEN

Aortic stenosis (AS) is an acute and chronic cardiovascular disease and If left untreated, 50% of these patients will die within two years of developing symptoms. AS is characterized as the stiffening of the aortic valve leaflets which restricts their motion and prevents the proper opening under transvalvular pressure. Assessments of the valve dynamics, if available, would provide valuable information about the patient's state of cardiac deterioration as well as heart recovery and can have incredible impacts on patient care, planning interventions and making critical clinical decisions with life-threatening risks. Despite remarkable advancements in medical imaging, there are no clinical tools available to quantify valve dynamics invasively or noninvasively. In this study, we developed a highly innovative ultrasound-based non-invasive computational framework that can function as a diagnostic tool to assess valve dynamics (e.g. transient 3-D distribution of stress and displacement, 3-D deformed shape of leaflets, geometric orifice area and angular positions of leaflets) for patients with AS at no risk to the patients. Such a diagnostic tool considers the local valve dynamics and the global circulatory system to provide a platform for testing the intervention scenarios and evaluating their effects. We used clinical data of 12 patients with AS not only to validate the proposed framework but also to demonstrate its diagnostic abilities by providing novel analyses and interpretations of clinical data in both pre and post intervention states. We used transthoracic echocardiogram (TTE) data for the developments and transesophageal echocardiography (TEE) data for validation.


Asunto(s)
Estenosis de la Válvula Aórtica , Cardiología , Humanos , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/diagnóstico por imagen , Ecocardiografía , Ecocardiografía Transesofágica
4.
Sci Rep ; 12(1): 9718, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690596

RESUMEN

Accurate hemodynamic analysis is not only crucial for successful diagnosis of coarctation of the aorta (COA), but intervention decisions also rely on the hemodynamics assessment in both pre and post intervention states to minimize patient risks. Despite ongoing advances in surgical techniques for COA treatments, the impacts of extra-anatomic bypass grafting, a surgical technique to treat COA, on the aorta are not always benign. Our objective was to investigate the impact of bypass grafting on aortic hemodynamics. We investigated the impact of bypass grafting on aortic hemodynamics using a patient-specific computational-mechanics framework in three patients with COA who underwent bypass grafting. Our results describe that bypass grafting improved some hemodynamic metrics while worsened the others: (1) Doppler pressure gradient improved (decreased) in all patients; (2) Bypass graft did not reduce the flow rate substantially through the COA; (3) Systemic arterial compliance increased in patients #1 and 3 and didn't change (improve) in patient 3; (4) Hypertension got worse in all patients; (5) The flow velocity magnitude improved (reduced) in patient 2 and 3 but did not improve significantly in patient 1; (6) There were elevated velocity magnitude, persistence of vortical flow structure, elevated turbulence characteristics, and elevated wall shear stress at the bypass graft junctions in all patients. We concluded that bypass graft may lead to pseudoaneurysm formation and potential aortic rupture as well as intimal hyperplasia due to the persistent abnormal and irregular aortic hemodynamics in some patients. Moreover, post-intervention, exposures of endothelial cells to high shear stress may lead to arterial remodeling, aneurysm, and rupture.


Asunto(s)
Coartación Aórtica , Humanos , Aorta/diagnóstico por imagen , Aorta/cirugía , Coartación Aórtica/diagnóstico por imagen , Coartación Aórtica/cirugía , Células Endoteliales , Hemodinámica , Hidrodinámica
5.
J Am Heart Assoc ; 11(2): e022664, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35023351

RESUMEN

Background Despite ongoing advances in surgical techniques for coarctation of the aorta (COA) repair, the long-term results are not always benign. Associated mixed valvular diseases (various combinations of aortic and mitral valvular pathologies) are responsible for considerable postoperative morbidity and mortality. We investigated the impact of COA and mixed valvular diseases on hemodynamics. Methods and Results We developed a patient-specific computational framework. Our results demonstrate that mixed valvular diseases interact with COA fluid dynamics and contribute to speed up the progression of the disease by amplifying the irregular flow patterns downstream of COA (local) and exacerbating the left ventricular function (global) (N=26). Velocity downstream of COA with aortic regurgitation alone was increased, and the situation got worse when COA and aortic regurgitation coexisted with mitral regurgitation (COA with normal valves: 5.27 m/s, COA with only aortic regurgitation: 8.8 m/s, COA with aortic and mitral regurgitation: 9.36 m/s; patient 2). Workload in these patients was increased because of the presence of aortic stenosis alone, aortic regurgitation alone, mitral regurgitation alone, and when they coexisted (COA with normal valves: 1.0617 J; COA with only aortic stenosis: 1.225 J; COA with only aortic regurgitation: 1.6512 J; COA with only mitral regurgitation: 1.3599 J; patient 1). Conclusions Not only the severity of COA, but also the presence and the severity of mixed valvular disease should be considered in the evaluation of risks in patients. The results suggest that more aggressive surgical approaches may be required, because regularly chosen current surgical techniques may not be optimal for such patients.


Asunto(s)
Coartación Aórtica , Insuficiencia de la Válvula Aórtica , Estenosis de la Válvula Aórtica , Insuficiencia de la Válvula Mitral , Humanos , Coartación Aórtica/complicaciones , Coartación Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Hemodinámica , Morbilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA