Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 62(19): 5282-5293, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37707233

RESUMEN

During the Aerosol and Cloud Experiment in the Eastern North Atlantic (ACE-ENA), a variety of in situ optical sensors using shadow imaging, scattering and holography were deployed by the Atmospheric Radiation Measurement (ARM) Aerial Facility to determine cloud properties. Taking advantage of the wide, overlapping range of instrumentation, we compare in situ cloud data from several different measurement methods for droplets up to 100 µm. Data processing was tailored to the encountered conditions, leading to good agreement. Improvements include noise reduction for holography and better out-of-focus correction for shadow imaging. Comparison between direct liquid water content measurements and optical sensors showed better agreement at higher droplet number concentrations (>120/c m 3).

2.
Sci Adv ; 8(2): eabj0329, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35020441

RESUMEN

Aerosol-cloud interactions remain uncertain in assessing climate change. While anthropogenic activities produce copious aerosol nanoparticles smaller than 10 nanometers, they are too small to act as efficient cloud condensation nuclei (CCN). The mechanisms responsible for particle growth to CCN-relevant sizes are poorly understood. Here, we present aircraft observations of rapid growth of anthropogenic nanoparticles downwind of an isolated metropolis in the Amazon rainforest. Model analysis reveals that the sustained particle growth to CCN sizes is predominantly caused by particle-phase diffusion-limited partitioning of semivolatile oxidation products of biogenic hydrocarbons. Cloud-resolving numerical simulations show that the enhanced CCN concentrations in the urban plume substantially alter the formation of shallow convective clouds, suppress precipitation, and enhance the transition to deep convective clouds. The proposed nanoparticle growth mechanism, expressly enabled by the abundantly formed semivolatile organics, suggests an appreciable impact of anthropogenic aerosols on cloud life cycle in previously unpolluted forests of the world.

3.
Nat Commun ; 12(1): 527, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483480

RESUMEN

Marine low clouds play an important role in the climate system, and their properties are sensitive to cloud condensation nuclei concentrations. While new particle formation represents a major source of cloud condensation nuclei globally, the prevailing view is that new particle formation rarely occurs in remote marine boundary layer over open oceans. Here we present evidence of the regular and frequent occurrence of new particle formation in the upper part of remote marine boundary layer following cold front passages. The new particle formation is facilitated by a combination of efficient removal of existing particles by precipitation, cold air temperatures, vertical transport of reactive gases from the ocean surface, and high actinic fluxes in a broken cloud field. The newly formed particles subsequently grow and contribute substantially to cloud condensation nuclei in the remote marine boundary layer and thereby impact marine low clouds.

4.
Sensors (Basel) ; 20(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167368

RESUMEN

Accurate representation of atmospheric aerosol properties is a long-standing problem in atmospheric research. Modern pilotless aerial systems provide a new platform for atmospheric in situ measurement. However, small airborne platforms require miniaturized instrumentation due to apparent size, power, and weight limitations. A Portable Optical Particle Spectrometer (POPS) is an emerged instrument to measure ambient aerosol size distribution with high time and size resolution, designed for deployment on a small unmanned aerial system (UAS) or tethered balloon system (TBS) platforms. This study evaluates the performance of a POPS with an upgraded laser heater and additional temperature sensors in the aerosol pathway. POPS maintains its performance under different environmental conditions as long as the laser temperature remains above 25 °C and the aerosol flow temperature inside the optical chamber is 15 °C higher than the ambient temperature. The comparison between POPS and an Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) suggests that the coincidence error is less than 25% when the number concentration is less than 4000 cm-3. The size distributions measured by both of them remained unaffected up to 15,000 cm-3. While both instruments' sizing accuracy is affected by the aerosol chemical composition and morphology, the influence is more profound on the POPS.

5.
Nature ; 539(7629): 416-419, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27776357

RESUMEN

The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.


Asunto(s)
Aerosoles/análisis , Lluvia , Aerosoles/química , Biomasa , Brasil , Incendios , Tamaño de la Partícula , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química
6.
Environ Sci Technol ; 47(18): 10446-53, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23869496

RESUMEN

A new ammonia (NH3) analyzer was developed based on off-axis integrated cavity output spectroscopy. Its feasibility was demonstrated by making tropospheric measurements in flights aboard the Department of Energy Gulfstream-1 aircraft. The ammonia analyzer consists of an optical cell, quantum-cascade laser, gas sampling system, control and data acquisition electronics, and analysis software. The NH3 mixing ratio is determined from high-resolution absorption spectra obtained by tuning the laser wavelength over the NH3 fundamental vibration band near 9.67 µm. Excellent linearity is obtained over a wide dynamic range (0-101 ppbv) with a response rate (1/e) of 2 Hz and a precision of ±90 pptv (1σ in 1 s). Two research flights were conducted over the Yakima Valley in Washington State. In the first flight, the ammonia analyzer was used to identify signatures of livestock from local dairy farms with high vertical and spatial resolution under low wind and calm atmospheric conditions. In the second flight, the analyzer captured livestock emission signals under windy conditions. Our results demonstrate that this new ammonia spectrometer is capable of providing fast, precise, and accurate in situ observations of ammonia aboard airborne platforms to advance our understanding of atmospheric compositions and aerosol formation.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/instrumentación , Análisis Espectral/métodos , Aeronaves , Amoníaco/análisis , Monitoreo del Ambiente/métodos , Washingtón , Viento
7.
Science ; 339(6127): 1572-8, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23449996

RESUMEN

Winter storms in California's Sierra Nevada increase seasonal snowpack and provide critical water resources and hydropower for the state. Thus, the mechanisms influencing precipitation in this region have been the subject of research for decades. Previous studies suggest Asian dust enhances cloud ice and precipitation, whereas few studies consider biological aerosols as an important global source of ice nuclei (IN). Here, we show that dust and biological aerosols transported from as far as the Sahara were present in glaciated high-altitude clouds coincident with elevated IN concentrations and ice-induced precipitation. This study presents the first direct cloud and precipitation measurements showing that Saharan and Asian dust and biological aerosols probably serve as IN and play an important role in orographic precipitation processes over the western United States.


Asunto(s)
Aerosoles/química , Altitud , Atmósfera/química , Polvo , Congelación , Hielo , África del Norte , Asia , Bacterias , Modelos Químicos , Lluvia/química , Estaciones del Año , Nieve/química , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA