Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Aquat Toxicol ; 271: 106923, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38669778

RESUMEN

Perfluorooctanesulfonic acid (PFOS) is a ubiquitous legacy environmental contaminant detected broadly in human samples and water supplies. PFOS can cross the placenta and has been detected in cord blood and breastmilk samples, underscoring the importance of understanding the impacts of maternal PFOS exposure during early development. This study aimed to investigate the effects of a preconception exposure to PFOS on developmental endpoints in offspring, as well as examine the role of the transcription factor Nuclear factor erythroid-2-related factor (Nrf2a) in mediating these effects. This transcription factor regulates the expression of several genes that protect cells against oxidative stress including during embryonic development. Adult female zebrafish were exposed to 0.02, 0.08 or 0.14 mg/L PFOS for 1 week (duration of one cycle of oocyte maturation) and then paired with unexposed males from Nrf2a mutant or wildtype strains. Embryos were collected for two weeks or until completion of 5 breeding events. PFOS was maternally transferred to offspring independent of genotype throughout all breeding events in a dose-dependent manner, ranging from 2.77 to 23.72 ng/embryo in Nrf2a wildtype and 2.40 to 15.80 ng/embryo in Nrf2a mutants. Although embryo viability at collection was not impacted by maternal PFOS exposure, developmental effects related to nutrient uptake, growth and pancreatic ß-cell morphology were observed and differed based on genotype. Triglyceride levels were increased in Nrf2a wildtype eggs from the highest PFOS group. In Nrf2a wildtype larvae there was a decrease in yolk sac uptake while in Nrf2a mutants there was an increase. Additionally, there was a significant decrease in pancreatic ß-cell (islet) area in wildtype larvae from the 0.14 mg/L PFOS accompanied by an increase in the prevalence of abnormal islet morphologies compared to controls. Abnormal morphology was also observed in the 0.02 and 0.08 mg/L PFOS groups. Interestingly, in Nrf2a mutants there was a significant increase in the pancreatic ß-cell area in the 0.02 and 0.08 mg/L PFOS groups and no changes in the prevalence of abnormal islet morphologies. These results suggest that the regulation of processes like nutrient consumption, growth and pancreatic ß-cell development are at least partially modulated by the presence of a functional Nrf2a transcriptomic response. Overall, preconception exposure to environmental pollutants, such as PFOS, may impact the maturing oocyte and cause subtle changes that can ultimately impact offspring health and development.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Exposición Materna , Factor 2 Relacionado con NF-E2 , Contaminantes Químicos del Agua , Pez Cebra , Animales , Fluorocarburos/toxicidad , Ácidos Alcanesulfónicos/toxicidad , Femenino , Contaminantes Químicos del Agua/toxicidad , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Masculino , Embrión no Mamífero/efectos de los fármacos , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos
2.
Food Chem Toxicol ; 186: 114560, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432440

RESUMEN

Alpha lipoic acid (ALA) is a dietary supplement that has been used to treat a wide range of diseases, including obesity and diabetes, and have lipid-lowering effects, making it a potential candidate for mitigating dyslipidemia resulting from exposures to the per- and polyfluoroalkyl substance (PFAS) family member perfluorooctanesulfonic acid (PFOS). ALA can be considered a non-fluorinated structural analog to PFOS due to their similar 8-carbon chain and amphipathic structure, but, unlike PFOS, is rapidly metabolized. PFOS has been shown to reduce pancreatic islet area and induce ß-cell lipotoxicity, indicating that changes in ß-cell lipid microenvironment is a mechanism contributing to hypomorphic islets. Due to structural similarities, we hypothesized that ALA may compete with PFOS for binding to proteins and distribution throughout the body to mitigate the effects of PFOS exposure. However, ALA alone reduced islet area and fish length, with several morphological endpoints indicating additive toxicity in the co-exposures. Individually, ALA and PFOS increased fatty acid uptake from the yolk. ALA alone increased liver lipid accumulation, altered fatty acid profiling and modulated PPARÉ£ pathway signaling. Together, this work demonstrates that ALA and PFOS have similar effects on lipid uptake and metabolism during embryonic development in zebrafish.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Ácido Tióctico , Contaminantes Químicos del Agua , Animales , Pez Cebra , Ácido Tióctico/farmacología , Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Ácidos Grasos , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA