Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 173: 116351, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422660

RESUMEN

Krabbe disease (KD) is a rare disorder arising from the deficiency of the lysosomal enzyme galactosylceramidase (GALC), leading to the accumulation of the cytotoxic metabolite psychosine (PSY) in the nervous system. This accumulation triggers demyelination and neurodegeneration, and despite ongoing research, the underlying pathogenic mechanisms remain incompletely understood, with no cure currently available. Previous studies from our lab revealed the involvement of autophagy dysfunctions in KD pathogenesis, showcasing p62-tagged protein aggregates in the brains of KD mice and heightened p62 levels in the KD sciatic nerve. We also demonstrated that the autophagy inducer Rapamycin (RAPA) can partially reinstate the wild type (WT) phenotype in KD primary cells by decreasing the number of p62 aggregates. In this study, we tested RAPA in the Twitcher (TWI) mouse, a spontaneous KD mouse model. We administered the drug ad libitum via drinking water (15 mg/L) starting from post-natal day (PND) 21-23. We longitudinally monitored the mouse motor performance through grip strength and rotarod tests, and a set of biochemical parameters related to the KD pathogenesis (i.e. autophagy markers expression, PSY accumulation, astrogliosis and myelination). Our findings demonstrate that RAPA significantly enhances motor functions at specific treatment time points and reduces astrogliosis in TWI brain, spinal cord, and sciatic nerves. Utilizing western blot and immunohistochemistry, we observed a decrease in p62 aggregates in TWI nervous tissues, corroborating our earlier in-vitro results. Moreover, RAPA treatment partially removes PSY in the spinal cord. In conclusion, our results advocate for considering RAPA as a supportive therapy for KD. Notably, as RAPA is already available in pharmaceutical formulations for clinical use, its potential for KD treatment can be rapidly evaluated in clinical trials.


Asunto(s)
Agua Potable , Leucodistrofia de Células Globoides , Animales , Ratones , Leucodistrofia de Células Globoides/tratamiento farmacológico , Leucodistrofia de Células Globoides/genética , Sirolimus/farmacología , Gliosis , Modelos Animales de Enfermedad , Psicosina/metabolismo , Fenotipo , Autofagia
2.
Biomolecules ; 13(10)2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37892244

RESUMEN

Krabbe disease is a rare neurodegenerative disease with an autosomal recessive character caused by a mutation in the GALC gene. The mutation leads to an accumulation of psychosine and a subsequent degeneration of oligodendrocytes and Schwann cells. Psychosine is the main biomarker of the disease. The Twitcher mouse is the most commonly used animal model to study Krabbe disease. Although there are many references to this model in the literature, the lipidomic study of nervous system tissues in the Twitcher model has received little attention. This study focuses on the comparison of the lipid profiles of four nervous system tissues (brain, cerebellum, spinal cord, and sciatic nerve) in the Twitcher mouse compared to the wild-type mouse. Altogether, approximately 230 molecular species belonging to 19 lipid classes were annotated and quantified. A comparison at the levels of class, molecular species, and lipid building blocks showed significant differences between the two groups, particularly in the sciatic nerve. The in-depth study of the lipid phenotype made it possible to hypothesize the genes and enzymes involved in the changes. The integration of metabolic data with genetic data may be useful from a systems biology perspective to gain a better understanding of the molecular basis of the disease.


Asunto(s)
Leucodistrofia de Células Globoides , Enfermedades Neurodegenerativas , Ratones , Animales , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Psicosina/metabolismo , Modelos Animales de Enfermedad , Lipidómica , Enfermedades Neurodegenerativas/metabolismo , Encéfalo/metabolismo
3.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047562

RESUMEN

Intranasal drug delivery is convenient and provides a high bioavailability but requires the use of mucoadhesive nanocarriers. Chitosan is a well-established polymer for mucoadhesive applications but can suffer from poor cytocompatibility and stability upon administration. In this work, we present a method to obtain stable and cytocompatible crosslinked chitosan nanoparticles. We used 2,6-pyridinedicarboxylic acid as a biocompatible crosslinker and compared the obtained particles with those prepared by ionotropic gelation using sodium tripolyphosphate. Nanoparticles were tested to evaluate the size and the surface charge, as well as their stability in storage conditions (4 °C), at the nasal cavity temperature (32 °C), and at the body temperature (37 °C). The crosslinked chitosan nanoparticles showed a size around 150 nm and a surface charge of 10.3 mV ± 0.9 mV, both compatible with the intranasal drug administration. Size and surface charge parameters did not significantly vary over time, indicating the good stability of these nanoparticles. We finally tested their cytocompatibility in vitro using SHSY5Y human neuroblastoma and RPMI 2650 human nasal epithelial cells, with positive results. In conclusion, the proposed synthetic system shows an interesting potential as a drug carrier for intranasal delivery.


Asunto(s)
Quitosano , Nanopartículas , Humanos , Administración Intranasal , Adhesivos , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos , Tamaño de la Partícula
4.
Biomedicines ; 11(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36979906

RESUMEN

Krabbe disease (KD) is a genetic disorder caused by the absence of the galactosylceramidase (GALC) functional enzyme. No cure is currently available. Here, we investigate the mechanotransduction process in primary fibroblasts collected from the twitcher mouse, a natural KD murine model. Thanks to mechanotransduction, cells can sense their environment and convert external mechanical stimuli into biochemical signals that result in intracellular changes. In GALC-deficient fibroblasts, we show that focal adhesions (FAs), the protein clusters necessary to adhere and migrate, are increased, and that single-cell migration and wound healing are impaired. We also investigate the involvement of the autophagic process in this framework. We show a dysregulation in the FA turnover: here, the treatment with the autophagy activator rapamycin boosts cell migration and improves the clearance of FAs in GALC-deficient fibroblasts. We propose mechanosensing impairment as a novel potential pathological mechanism in twitcher fibroblasts, and more in general in Krabbe disease.

5.
Biomedicines ; 10(12)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36551902

RESUMEN

Twitcher (Twi) is a neurological Krabbe disease (KD, or globoid cell leukodystrophy) spontaneous mutant line in mice. The genome of the Twi mouse presents a single nucleotide polymorphism (SNP), leading to an enzymatically inactive galactosylceramidase (Galc) protein that causes KD. In this context, mouse Twi genotyping is an essential step in KD research. To date, the genotyping method used is labor-intensive and often has ambiguous results. Here, we evaluated a novel protocol for the genotype determination of Galc mutation status in Twi mice based on the allele-discrimination real-time polymerase chain reaction (PCR). Here, DNA is extracted from Twi mice (n = 20, pilot study; n = 120, verification study) and control group (n = 10, pilot study; n = 30 verification study) and assessed by allele-discrimination real-time PCR to detect SNP c.355G>A. Using the allele-discrimination PCR, all of the samples are identified correctly with the genotype GG (wild-type, WT), GA (heterozygote, HET), or AA (homozygote, HOM) using the first analysis and no animals are not genotyped. We demonstrated that this novel method can be used to distinguish KD timely, accurately, and without ambiguity in HOM, WT, and HET animals. This protocol represents a great opportunity to increase accuracy and speed in KD research.

6.
JIMD Rep ; 63(1): 50-65, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35028271

RESUMEN

Krabbe disease (KD; or globoid cell leukodystrophy) is an autosomal recessive lysosomal storage disorder caused by deficiency of the galactosylceramidase (GALC) enzyme. No cure is currently available for KD. Clinical applied treatments are supportive only. Recently, we demonstrated that two differently acting autophagy inducers (lithium and rapamycin) can improve some KD hallmarks in-vitro, laying the foundation for their in-vivo pre-clinical testing. Here, we test lithium carbonate in-vivo, in the spontaneous mouse model for KD, the Twitcher (TWI) mouse. The drug is administered ad libitum via drinking water (600 mg/L) starting from post natal day 20. We longitudinally monitor the mouse motor performance through the grip strength, the hanging wire and the rotarod tests, and a set of biochemical parameters related to the KD pathogenesis [i.e., GALC enzymatic activity, psychosine (PSY) accumulation and astrogliosis]. Additionally, we investigate the expression of some crucial markers related to the two pathways that could be altered by lithium: the autophagy and the ß-catenin-dependent pathways. Results demonstrate that lithium has not a significant rescue effect on the TWI phenotype, although it can slightly and transiently improves muscle strength. We also show that lithium, with this administration protocol, is unable to stimulate autophagy in the TWI mice central nervous system, whereas results suggest that it can restore the ß-catenin activation status in the TWI sciatic nerve. Overall, these data provide intriguing inputs for further evaluations of lithium treatment in TWI mice.

7.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360664

RESUMEN

Peripheral nerve injuries are a common condition in which a nerve is damaged, affecting more than one million people every year. There are still no efficient therapeutic treatments for these injuries. Artificial scaffolds can offer new opportunities for nerve regeneration applications; in this framework, chitosan is emerging as a promising biomaterial. Here, we set up a simple and effective method for the production of micro-structured chitosan films by solvent casting, with high fidelity in the micro-pattern reproducibility. Three types of chitosan directional micro-grooved patterns, presenting different levels of symmetricity, were developed for application in nerve regenerative medicine: gratings (GR), isosceles triangles (ISO) and scalene triangles (SCA). The directional patterns were tested with a Schwann cell line. The most asymmetric topography (SCA), although it polarized the cell shaping less efficiently, promoted higher cell proliferation and a faster cell migration, both individually and collectively, with a higher directional persistence of motion. Overall, the use of micro-structured asymmetrical directional topographies may be exploited to enhance the nerve regeneration process mediated by chitosan scaffolds.


Asunto(s)
Quitosano/química , Membranas/química , Regeneración Nerviosa , Neurilemoma/terapia , Células de Schwann/citología , Cicatrización de Heridas , Movimiento Celular , Proliferación Celular , Humanos , Neurilemoma/patología
8.
Biomolecules ; 11(1)2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374753

RESUMEN

Krabbe disease (KD, or globoid cell leukodystrophy; OMIM #245200) is an inherited neurodegenerative condition belonging to the class of the lysosomal storage disorders. It is caused by genetic alterations in the gene encoding for the enzyme galactosylceramidase, which is responsible for cleaving the glycosydic linkage of galatosylsphingosine (psychosine or PSY), a highly cytotoxic molecule. Here, we describe morphological and functional alterations in the visual system of the Twitcher (TWI) mouse, the most used animal model of Krabbe disease. We report in vivo electrophysiological recordings showing defective basic functional properties of the TWI primary visual cortex. In particular, we demonstrate a reduced visual acuity and contrast sensitivity, and a delayed visual response. Specific neuropathological alterations are present in the TWI visual cortex, with reduced myelination, increased astrogliosis and microglia activation, and around the whole brain. Finally, we quantify PSY content in the brain and optic nerves by high-pressure liquid chromatography-mass spectrometry methods. An increasing PSY accumulation with time, the characteristic hallmark of KD, is found in both districts. These results represent the first complete characterization of the TWI visual system. Our data set a baseline for an easy testing of potential therapies for this district, which is also dramatically affected in KD patients.


Asunto(s)
Galactosilceramidasa/genética , Leucodistrofia de Células Globoides/genética , Enfermedades por Almacenamiento Lisosomal/genética , Corteza Visual/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Galactosilceramidasa/metabolismo , Humanos , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patología , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Ratones , Vaina de Mielina/metabolismo , Psicosina/genética , Psicosina/metabolismo , Corteza Visual/patología
9.
Appl Opt ; 59(6): 1756-1762, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32225682

RESUMEN

When live imaging is not feasible, sample fixation allows preserving the ultrastructure of biological samples for subsequent microscopy analysis. This process could be performed with various methods, each one affecting differently the biological structure of the sample. While these alterations were well-characterized using traditional microscopy, little information is available about the effects of the fixatives on the spatial molecular orientation of the biological tissue. We tackled this issue by employing rotating-polarization coherent anti-Stokes Raman scattering (RP-CARS) microscopy to study the effects of different fixatives on the myelin sub-micrometric molecular order and micrometric morphology. RP-CARS is a novel technique derived from CARS microscopy that allows probing spatial orientation of molecular bonds while maintaining the intrinsic chemical selectivity of CARS microscopy. By characterizing the effects of the fixation procedures, the present work represents a useful guide for the choice of the best fixation technique(s), in particular for polarization-resolved CARS microscopy. Finally, we show that the combination of paraformaldehyde and glutaraldehyde can be effectively employed as a fixative for RP-CARS microscopy, as long as the effects on the molecular spatial distribution, here characterized, are taken into account.


Asunto(s)
Fijadores/química , Sondas Moleculares/química , Vaina de Mielina/química , Espectrometría Raman/métodos , Animales , Formaldehído/química , Glutaral/química , Humanos , Microscopía de Polarización , Vaina de Mielina/ultraestructura , Polímeros/química , Espectrometría Raman/instrumentación
10.
Sci Rep ; 10(1): 3742, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32111918

RESUMEN

Contact interaction of neuronal cells with extracellular nanometric features can be exploited to investigate and modulate cellular responses. By exploiting nanogratings (NGs) with linewidth from 500 nm down to 100 nm, we here study neurite contact guidance along ultra-small directional topographies. The impact of NG lateral dimension on the neuronal morphotype, neurite alignment, focal adhesion (FA) development and YAP activation is investigated in nerve growth factor (NGF)-differentiating PC12 cells and in primary hippocampal neurons, by confocal and live-cell total internal reflection fluorescence (TIRF) microscopy, and at molecular level. We demonstrate that loss of neurite guidance occurs in NGs with periodicity below 400 nm and correlates with a loss of FA lateral constriction and spatial organization. We found that YAP intracellular localization is modulated by the presence of NGs, but it is not sensitive to their periodicity. Nocodazole, a drug that can increase cell contractility, is finally tested for rescuing neurite alignment showing mild ameliorative effects. Our results provide new indications for a rational design of biocompatible scaffolds for enhancing nerve-regeneration processes.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Orientación del Axón , Hipocampo/metabolismo , Nanoestructuras , Neuritas/metabolismo , Transducción de Señal , Animales , Adhesión Celular , Hipocampo/citología , Células PC12 , Ratas , Proteínas Señalizadoras YAP
11.
Mol Autism ; 10: 41, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798818

RESUMEN

Background: Although neuronal extracellular sensing is emerging as crucial for brain wiring and therefore plasticity, little is known about these processes in neurodevelopmental disorders. Ubiquitin protein ligase E3A (UBE3A) plays a key role in neurodevelopment. Lack of UBE3A leads to Angelman syndrome (AS), while its increase is among the most prevalent genetic causes of autism (e.g., Dup15q syndrome). By using microstructured substrates that can induce specific directional stimuli in cells, we previously found deficient topographical contact guidance in AS neurons, which was linked to a dysregulated activation of the focal adhesion pathway. Methods: Here, we study axon and dendrite contact guidance and neuronal morphological features of wild-type, AS, and UBE3A-overexpressing neurons (Dup15q autism model) on micrograting substrates, with the aim to clarify the role of UBE3A in neuronal guidance. Results: We found that loss of axonal contact guidance is specific for AS neurons while UBE3A overexpression does not affect neuronal directional polarization along microgratings. Deficits at the level of axonal branching, growth cone orientation and actin fiber content, focal adhesion (FA) effectors, and actin fiber-binding proteins were observed in AS neurons. We tested different rescue strategies for restoring correct topographical guidance in AS neurons on microgratings, by either UBE3A protein re-expression or by pharmacological treatments acting on cytoskeleton contractility. Nocodazole, a drug that depolymerizes microtubules and increases cell contractility, rescued AS axonal alignment to the gratings by partially restoring focal adhesion pathway activation. Surprisingly, UBE3A re-expression only resulted in partial rescue of the phenotype. Conclusions: We identified a specific in vitro deficit in axonal topographical guidance due selectively to the loss of UBE3A, and we further demonstrate that this defective guidance can be rescued to a certain extent by pharmacological or genetic treatment strategies. Overall, cytoskeleton dynamics emerge as important partners in UBE3A-mediated contact guidance responses. These results support the view that UBE3A-related deficits in early neuronal morphogenesis may lead to defective neuronal connectivity and plasticity.


Asunto(s)
Hipocampo/patología , Neuronas/metabolismo , Ubiquitina-Proteína Ligasas/deficiencia , Animales , Axones/metabolismo , Células Cultivadas , Citoesqueleto/metabolismo , Dendritas/metabolismo , Femenino , Adhesiones Focales/metabolismo , Conos de Crecimiento/metabolismo , Masculino , Ratones , Ubiquitina-Proteína Ligasas/metabolismo
12.
Sci Adv ; 5(11): eaax7462, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31799395

RESUMEN

Lysosomal storage disorders (LSDs) result from an enzyme deficiency within lysosomes. The systemic administration of the missing enzyme, however, is not effective in the case of LSDs with central nervous system (CNS)-involvement. Here, an enzyme delivery system based on the encapsulation of cross-linked enzyme aggregates (CLEAs) into poly-(lactide-co-glycolide) (PLGA) nanoparticles (NPs) functionalized with brain targeting peptides (Ang2, g7 or Tf2) is demonstrated for Krabbe disease, a neurodegenerative LSD caused by galactosylceramidase (GALC) deficiency. We first synthesize and characterize Ang2-, g7- and Tf2-targeted GALC CLEA NPs. We study NP cell trafficking and capability to reinstate enzymatic activity in vitro. Then, we successfully test our formulations in the Twitcher mouse. We report enzymatic activity measurements in the nervous system and in accumulation districts upon intraperitoneal injections, demonstrating activity recovery in the brain up to the unaffected mice level. Together, these results open new therapeutic perspectives for all LSDs with major CNS-involvement.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Terapia de Reemplazo Enzimático/métodos , Galactosilceramidasa/administración & dosificación , Leucodistrofia de Células Globoides/terapia , Nanopartículas/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular , Galactosilceramidasa/deficiencia , Células HEK293 , Antígenos HLA/metabolismo , Humanos , Leucodistrofia de Células Globoides/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ribonucleasa Pancreática/metabolismo , Valina-ARNt Ligasa/metabolismo
13.
Biophys Rev ; 11(5): 807-815, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31529358

RESUMEN

Regenerative medicine is continuously facing new challenges and it is searching for new biocompatible, green/natural polymer materials, possibly biodegradable and non-immunogenic. Moreover, the critical importance of the nano/microstructuring of surfaces is overall accepted for their full biocompatibility and in vitro/in vivo performances. Chitosan is emerging as a promising biopolymer for tissue engineering and its application can be further improved by exploiting its nano/microstructuration. Here, we report the state of the art of chitosan films and scaffolds nano/micro-structuration. We show that it is possible to obtain, by solvent casting, chitosan thin films with good mechanical properties and to structure them at the microscale and even nanoscale level, with resolutions down to 100 nm.

14.
Neurobiol Dis ; 129: 195-207, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31108173

RESUMEN

Krabbe disease (KD) is a childhood leukodystrophy with no cure currently available. KD is due to a deficiency of a lysosomal enzyme called galactosyl-ceramidase (GALC) and is characterized by the accumulation in the nervous system of the sphingolipid psychosine (PSY), whose cytotoxic molecular mechanism is not fully known yet. Here, we study the expression of some fundamental autophagy markers (LC3, p62, and Beclin-1) in a KD murine model [the twitcher (TWI) mouse] by immunohistochemistry and Western blot. Moreover, the autophagy molecular process is also shown in primary fibroblasts from TWI and WT mice, with and without PSY treatment. Data demonstrate that large p62 cytoplasmic aggregates are present in the brain of both early and late symptomatic TWI mice. p62 expression is also upregulated in TWI sciatic nerves compared to that measured for WT nerves. In vitro data suggest that this effect might not be fully PSY-driven. Finally, we investigate in vitro the capability of autophagy inducers (Rapamycin, RAP and Resveratrol, RESV) to reinstate the WT phenotype in TWI cells. We show that RAP administration can partially restore the autophagy markers levels, while RESV cannot, indicating a line along which new therapeutic approaches can be developed.


Asunto(s)
Autofagia/fisiología , Encéfalo/patología , Leucodistrofia de Células Globoides/patología , Nervio Ciático/patología , Animales , Autofagia/efectos de los fármacos , Biomarcadores/análisis , Encéfalo/metabolismo , Leucodistrofia de Células Globoides/metabolismo , Ratones , Resveratrol/farmacología , Nervio Ciático/metabolismo , Sirolimus/farmacología
15.
Mol Cell Proteomics ; 18(6): 1227-1241, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30926673

RESUMEN

Krabbe disease is a rare, childhood lysosomal storage disorder caused by a deficiency of galactosylceramide beta-galactosidase (GALC). The major effect of GALC deficiency is the accumulation of psychosine in the nervous system and widespread degeneration of oligodendrocytes and Schwann cells, causing rapid demyelination. The molecular mechanisms of Krabbe disease are not yet fully elucidated and a definite cure is still missing. Here we report the first in-depth characterization of the proteome of the Twitcher mouse, a spontaneous mouse model of Krabbe disease, to investigate the proteome changes in the Central and Peripheral Nervous System. We applied a TMT-based workflow to compare the proteomes of the corpus callosum, motor cortex and sciatic nerves of littermate homozygous Twitcher and wild-type mice. More than 400 protein groups exhibited differences in expression and included proteins involved in pathways that can be linked to Krabbe disease, such as inflammatory and defense response, lysosomal proteins accumulation, demyelination, reduced nervous system development and cell adhesion. These findings provide new insights on the molecular mechanisms of Krabbe disease, representing a starting point for future functional experiments to study the molecular pathogenesis of Krabbe disease. Data are available via ProteomeXchange with identifier PXD010594.


Asunto(s)
Sistema Nervioso Central/metabolismo , Leucodistrofia de Células Globoides/metabolismo , Sistema Nervioso Periférico/metabolismo , Proteómica/métodos , Animales , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Femenino , Ontología de Genes , Masculino , Ratones , Sistema Nervioso Periférico/patología , Análisis de Componente Principal , Proteoma/metabolismo
16.
Biophys J ; 116(3): 477-486, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30709620

RESUMEN

The plasma membrane of cells has a complex architecture based on the bidimensional liquid-crystalline bilayer arrangement of phospho- and sphingolipids, which in turn embeds several proteins and is connected to the cytoskeleton. Several studies highlight the spatial membrane organization into more ordered (Lo or lipid raft) and more disordered (Ld) domains. We here report on a fluorescent analog of the green fluorescent protein chromophore that, when conjugated to a phospholipid, enables the quantification of the Lo and Ld domains in living cells on account of its large fluorescence lifetime variation in the two phases. The domain composition is straightforwardly obtained by the phasor approach to confocal fluorescence lifetime imaging, a graphical method that does not require global fitting of the fluorescence decay in every spatial position of the sample. Our imaging strategy was applied to recover the domain composition in human oligodendrocytes at rest and under treatment with galactosylsphingosine (psychosine). Exogenous psychosine administration recapitulates many of the molecular fingerprints of a severe neurological disease, globoid cell leukodystrophy, better known as Krabbe disease. We found out that psychosine progressively destabilizes plasma membrane, as witnessed by a shrinking of the Lo fraction. The unchanged levels of galactosyl ceramidase, i.e., the enzyme lacking in Krabbe disease, upon psychosine treatment suggest that psychosine alters the plasma membrane structure by direct physical effect, as also recently demonstrated in model membranes.


Asunto(s)
Membrana Celular/metabolismo , Leucodistrofia de Células Globoides/patología , Membrana Dobles de Lípidos/metabolismo , Animales , Células CHO , Cricetulus , Humanos , Microdominios de Membrana/metabolismo , Conformación Molecular , Simulación de Dinámica Molecular , Oligodendroglía/patología
17.
Bioorg Med Chem ; 26(22): 5885-5895, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30415894

RESUMEN

The expression levels and the subcellular localization of adenosine receptors (ARs) are affected in several pathological conditions as a consequence of changes in adenosine release and metabolism. In this respect, labelled probes able to monitor the AR expression could be a useful tool to investigate different pathological conditions. Herein, novel ligands for ARs, bearing the fluorescent 7-nitrobenzofurazan (NBD) group linked to the N1 (1,2) or N10 (3,4) nitrogen of a triazinobenzimidazole scaffold, were synthesized. The compounds were biologically evaluated as fluorescent probes for labelling A1 and A2B AR subtypes in bone marrow-derived mesenchymal stem cells (BM-MSCs) that express both receptor subtypes. The binding affinity of the synthetized compounds towards the different AR subtypes was determined. The probe 3 revealed a higher affinity to A1 and A2B ARs, showing interesting spectroscopic properties, and it was selected as the most suitable candidate to label both AR subtypes in undifferentiated MSCs. Fluorescence confocal microscopy showed that compound 3 significantly labelled ARs on cell membranes and the fluorescence signal was decreased by the cell pre-incubation with the A1 AR and A2B AR selective agonists, R-PIA and BAY 60-6583, respectively, thus confirming the specificity of the obtained signal. In conclusion, compound 3 could represent a useful tool to investigate the expression pattern of both A1 and A2B ARs in different pathological and physiological processes. Furthermore, these results provide an important basis for the design of new and more selective derivatives able to monitor the expression and localization of each different ARs in several tissues and living cells.


Asunto(s)
Bencimidazoles/farmacología , Colorantes Fluorescentes/farmacología , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2B/metabolismo , Triazinas/farmacología , Bencimidazoles/síntesis química , Bencimidazoles/química , Células Cultivadas , Relación Dosis-Respuesta a Droga , Fluorescencia , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Humanos , Microscopía Confocal , Estructura Molecular , Receptor de Adenosina A1/química , Receptor de Adenosina A2B/química , Relación Estructura-Actividad , Triazinas/síntesis química , Triazinas/química
18.
Anal Chem ; 90(12): 7450-7457, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29791795

RESUMEN

In the last few decades, new types of cell cultures have been introduced to provide better cell survival and development, with micro- and nanoenvironmental physicochemical conditions aimed at mimicking those present in vivo. However, despite the efforts made, the systems available to date are often difficult to replicate and use. Here, an easy-to-use surface-acoustic-wave (SAW)-based platform is presented for realizing dynamic cell cultures that is compatible with standard optical microscopes, incubators, and cell-culture dishes. The SAW chip is coupled to a standard Petri dish via a polydimethylsiloxane (PDMS) disc and consists of a lithium niobate (LN) substrate on which gold interdigital transducers (IDTs) are patterned to generate the SAWs and induce acoustic streaming in the dish. SAW excitation is verified and characterized by laser Doppler vibrometry, and the fluid dynamics is studied by microparticle image velocimetry (µPIV). Heating is measured by an infrared (IR) thermal camera. We finally tested this device with the U-937 monocyte cell line for viability and proliferation and cell-morphological analysis. The data demonstrate that it is possible to induce significant fluid recirculation within the Petri dish while maintaining negligible heating. Remarkably, cell proliferation in this condition was enhanced by 36 ± 12% with respect to those of standard static cultures. Finally, we show that cell death does not increase and that cell morphology is not altered in the presence of SAWs. This device is the first demonstration that SAW-induced streaming can mechanically improve cell proliferation and further supports the great versatility and biocompatibility of the SAW technology for cell manipulation.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Sonido , Biotecnología/métodos , Proliferación Celular , Calor , Humanos , Hidrodinámica , Células U937
19.
Sci Rep ; 8(1): 502, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323135

RESUMEN

In the last decade, the use of flexible biosensors for neuroprosthetic and translational applications has widely increased. Among them, the polyimide (PI)-based thin-film electrodes got a large popularity. However, the usability of these devices is still hampered by a non-optimal tissue-device interface that usually compromises the long-term quality of neural signals. Advanced strategies able to improve the surface properties of these devices have been developed in the recent past. Unfortunately, most of them are not easy to be developed and combined with micro-fabrication processes, and require long-term efforts to be testable with human subjects. Here we show the results of the design and in vitro testing of an easy-to-implement and potentially interesting coating approach for thin-film electrodes. In particular, two biocompatible coatings were obtained via covalent conjugation of a laminin-derived peptide, CAS-IKVAV-S (IKV), with polyimide sheets that we previously functionalized with vinyl- and amino- groups (PI_v and PI_a respectively). Both the engineered coatings (PI_v+IKV and PI_a+IKV) showed morphological and chemical properties able to support neuronal adhesion, neurite sprouting, and peripheral glial cell viability while reducing the fibroblasts contamination of the substrate. In particular, PI_v+IKV showed promising results that encourage further in vivo investigation and pave the way for a new generation of peptide-coated thin-film electrodes.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Péptidos/química , Secuencia de Aminoácidos , Animales , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Materiales Biocompatibles Revestidos/farmacología , Electrodos , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Laminina/química , Ensayo de Materiales , Neuritas/fisiología , Células PC12 , Ratas , Ratas Wistar , Resinas Sintéticas/química , Células de Schwann/citología , Células de Schwann/metabolismo , Propiedades de Superficie
20.
Nanoscale ; 9(39): 14861-14874, 2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-28948996

RESUMEN

Periodic ripples are a variety of anisotropic nanostructures that can be realized by ion beam irradiation on a wide range of solid surfaces. Only a few authors have investigated these surfaces for tuning the response of biological systems, probably because it is challenging to directly produce them in materials that well sustain long-term cellular cultures. Here, hierarchical rippled nanotopographies with a lateral periodicity of ∼300 nm are produced from a gold-irradiated germanium mold in polyethylene terephthalate (PET), a biocompatible polymer approved by the US Food and Drug Administration for clinical applications, by a novel three-step embossing process. The effects of nano-ripples on Schwann Cells (SCs) are studied in view of their possible use for nerve-repair applications. The data demonstrate that nano-ripples can enhance short-term SC adhesion and proliferation (3-24 h after seeding), drive their actin cytoskeleton spatial organization and sustain long-term cell growth. Notably, SCs are oriented perpendicularly with respect to the nanopattern lines. These results provide information about the possible use of hierarchical nano-rippled elements for nerve-regeneration protocols.


Asunto(s)
Adhesión Celular , Nanoestructuras , Células de Schwann/citología , Animales , Proliferación Celular , Células Cultivadas , Germanio , Regeneración Nerviosa , Tereftalatos Polietilenos , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...