Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 24(2): 102075, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33644711

RESUMEN

Inheritance of chromatin-bound proteins theoretically plays a role in the epigenetic transmission of cellular phenotypes. Protein segregation during cell division is however poorly understood. We now describe TrIPP (Tracking the Inheritance Patterns of Proteins): a live cell imaging method for tracking maternal proteins during asymmetric cell divisions of budding yeast. Our analysis of the partitioning pattern of a test set of 18 chromatin-associated proteins reveals that abundant and moderately abundant maternal proteins segregate stochastically and symmetrically between the two cells with the exception of Rxt3p, Fpr4p, and Tup1p, which are preferentially retained in the mother. Low abundance proteins also tend to be retained in the mother cell with the exception of Sir2p and the linker histone H1. Our analysis of chromatin protein behavior in single cells reveals potentially general trends such as coupled protein synthesis and decay and a correlation between protein half-lives and cell-cycle duration.

2.
Cell Rep ; 16(10): 2651-2665, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27568571

RESUMEN

Chromatin is thought to carry epigenetic information from one generation to the next, although it is unclear how such information survives the disruptions of nucleosomal architecture occurring during genomic replication. Here, we measure a key aspect of chromatin structure dynamics during replication-how rapidly nucleosome positions are established on the newly replicated daughter genomes. By isolating newly synthesized DNA marked with 5-ethynyl-2'-deoxyuridine (EdU), we characterize nucleosome positions on both daughter genomes of S. cerevisiae during chromatin maturation. We find that nucleosomes rapidly adopt their mid-log positions at highly transcribed genes, which is consistent with a role for transcription in positioning nucleosomes in vivo. Additionally, experiments in hir1Δ mutants reveal a role for HIR in nucleosome spacing. We also characterized nucleosome positions on the leading and lagging strands, uncovering differences in chromatin maturation dynamics at hundreds of genes. Our data define the maturation dynamics of newly replicated chromatin and support a role for transcription in sculpting the chromatin template.


Asunto(s)
Posicionamiento de Cromosoma/genética , Replicación del ADN/genética , Genoma Fúngico , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , ADN de Hongos/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Modelos Biológicos , Mutación/genética , Sistemas de Lectura Abierta/genética , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...