Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biol Drug Des ; 101(6): 1299-1306, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36752700

RESUMEN

In this study, five neolignans were isolated from Saururus cernuus-threo-dihydroguaiaretic acid (1), threo-austrobailignan-6 (2), threo-austrobailignan-5 (3), verrucosin (4), and saucernetin (5)-and have their cytotoxic effects evaluated in prostate cancer cell lines (PC3 and DU145). Initially, using an in silico approach, tested compounds were predicted to be absorbed by the gastrointestinal tract, be able to permeate the blood-brain barrier and did not show any alert in PAINS (pan-assay structures interference). In vitro assays showed that compounds 2, 4, and 5 reduced cell viability of DU145 cell line at 100 µmol/L after 48 h while compounds 1 and 3 showed to be inactive at the same conditions. Furthermore, compounds 4 and 5 reduced cell number as early as in 24 h at 50 µmol/L and compound 2 showed effects at 100 µmol/L in 24 h against both cancer cell lines PC3 and DU145. Studies using flow cytometry were conducted and indicated that compound 4 induced strong necrosis and apoptosis whereas compound 5 induced strong necrosis. Otherwise, less active compound 2 did not show evidence of induction of apoptosis or necrosis, suggesting that its mechanism of action involves inhibition of cell proliferation. In conclusion, compounds 4 and 5 have been shown to be promising cytotoxic agents against prostate cancer cell lines and can be used as a starting point for the development of new drugs for the treatment of prostate cancer.


Asunto(s)
Antineoplásicos , Lignanos , Neoplasias de la Próstata , Saururaceae , Masculino , Humanos , Saururaceae/química , Lignanos/farmacología , Lignanos/uso terapéutico , Antineoplásicos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Apoptosis , Línea Celular Tumoral , Necrosis/tratamiento farmacológico
2.
Genet Mol Biol ; 45(3 Suppl 1): e20220079, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36206378

RESUMEN

Adenovirus was first identified in the 1950s and since then this pathogenic group of viruses has been explored and transformed into a genetic transfer vehicle. Modification or deletion of few genes are necessary to transform it into a conditionally or non-replicative vector, creating a versatile tool capable of transducing different tissues and inducing high levels of transgene expression. In the early years of vector development, the application in monogenic diseases faced several hurdles, including short-term gene expression and even a fatality. On the other hand, an adenoviral delivery strategy for treatment of cancer was the first approved gene therapy product. There is an increasing interest in expressing transgenes with therapeutic potential targeting the cancer hallmarks, inhibiting metastasis, inducing cancer cell death or modulating the immune system to attack the tumor cells. Replicative adenovirus as vaccines may be even older and date to a few years of its discovery, application of non-replicative adenovirus for vaccination against different microorganisms has been investigated, but only recently, it demonstrated its full potential being one of the leading vaccination tools for COVID-19. This is not a new vector nor a new technology, but the result of decades of careful and intense work in this field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...