Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 85
1.
Antibiotics (Basel) ; 13(4)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38666972

(1) Background: The advantage of using carbapenems over beta-lactam/beta-lactamase inhibitor combinations in critically ill septic patients still remains a debated issue. We aimed to assess the comparative impact of an optimized pharmacokinetic/pharmacodynamic (PK/PD) target attainment of piperacillin-tazobactam vs. meropenem on the trend over time of both Sequential Organ Failure Assessment (SOFA) score and inflammatory biomarkers in critically ill patients receiving continuous infusion (CI) monotherapy with piperacillin-tazobactam or meropenem for treating documented Gram-negative bloodstream infections (BSI) and/or ventilator-associated pneumonia (VAP). (2) Methods: We performed a retrospective observational study comparing critically ill patients receiving targeted treatment with CI meropenem monotherapy for documented Gram-negative BSIs or VAP with a historical cohort of critical patients receiving CI piperacillin-tazobactam monotherapy. Patients included in the two groups were admitted to the general and post-transplant intensive care unit in the period July 2021-September 2023 and fulfilled the same inclusion criteria. The delta values of the SOFA score between the baseline of meropenem or piperacillin-tazobactam treatment and those at 48-h (delta 48-h SOFA score) or at 7-days (delta 7-days SOFA) were selected as primary outcomes. Delta 48-h and 7-days C-reactive protein (CRP) and procalcitonin (PCT), microbiological eradication, resistance occurrence, clinical cure, multi-drug resistant colonization at 90-day, ICU, and 30-day mortality rate were selected as secondary outcomes. Univariate analysis comparing primary and secondary outcomes between critically ill patients receiving CI monotherapy with piperacillin-tazobactam vs. meropenem was carried out. (3) Results: Overall, 32 critically ill patients receiving CI meropenem monotherapy were compared with a historical cohort of 43 cases receiving CI piperacillin-tazobactam monotherapy. No significant differences in terms of demographics and clinical features emerged at baseline between the two groups. Optimal PK/PD target was attained in 83.7% and 100.0% of patients receiving piperacillin-tazobactam and meropenem, respectively. No significant differences were observed between groups in terms of median values of delta 48-h SOFA (0 points vs. 1 point; p = 0.89) and median delta 7-days SOFA (2 points vs. 1 point; p = 0.43). Similarly, no significant differences were found between patients receiving piperacillin-tazobactam vs. meropenem for any of the secondary outcomes. (4) Conclusion: Our findings may support the contention that in critically ill patients with documented Gram-negative BSIs and/or VAP, the decreases in the SOFA score and in the inflammatory biomarkers serum levels achievable with CI piperacillin-tazobactam monotherapy at 48-h and at 7-days may be of similar extent and as effective as to those achievable with CI meropenem monotherapy provided that optimization on real-time by means of a TDM-based expert clinical pharmacological advice program is granted.

2.
Ann Intensive Care ; 14(1): 36, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38448761

BACKGROUND: Bloodstream infections (BSIs) by Gram-negative pathogens play a major role in intensive care patients, both in terms of prevalence and severity, especially if multi-drug resistant pathogens are involved. Early appropriate antibiotic therapy is therefore a cornerstone in the management of these patients, and growing evidence shows that implementation of a multidisciplinary team may improve patients' outcomes. Our aim was to evaluate the clinical and microbiological impact of the application of a multidisciplinary team on critically ill patients. METHODS: Pre-post study enrolling critically ill patients with Gram negative bloodstream infection in intensive care unit. In the pre-intervention phase (from January until December 2018) patients were managed with infectious disease consultation on demand, in the post-intervention phase (from January until December 2022) patients were managed with a daily evaluation by a multidisciplinary team composed of intensivist, infectious disease physician, clinical pharmacologist and microbiologist. RESULTS: Overall, 135 patients were enrolled during the study period, of them 67 (49.6%) in the pre-intervention phase and 68 (50.4%) in the post-intervention phase. Median age was 67 (58-75) years, sex male was 31.9%. Septic shock, the need for continuous renal replacement therapy and mechanical ventilation at BSI onset were similar in both groups, no difference of multidrug-resistant organisms (MDRO) prevalence was observed. In the post-phase, empirical administration of carbapenems decreased significantly (40.3% vs. 62.7%, p = 0.02) with an increase of appropriate empirical therapy (86.9% vs. 55.2%, p < 0.001) and a decrease of overall antibiotic treatment (12 vs. 16 days, p < 0.001). Despite no differences in delta SOFA and all-cause 30-day mortality, a significant decrease in microbiological failure (10.3% vs. 29.9%, p = 0.005) and a new-onset 30-day MDRO colonization (8.3% vs. 36.6%, p < 0.001) in the post-phase was reported. At multivariable analysis adjusted for main covariates, the institution of a multidisciplinary management team (MMT) was found to be protective both for new MDRO colonization [OR 0.17, 95%CI(0.05-0.67)] and microbiological failure [OR 0.37, 95%CI (0.14-0.98)]. CONCLUSIONS: The institution of a MMT allowed for an optimization of antimicrobial treatments, reflecting to a significant decrease in new MDRO colonization and microbiological failure among critically ill patients.

3.
Antimicrob Agents Chemother ; 68(4): e0140423, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38411995

Piperacillin/tazobactam (TZP) is administered intravenously in a fixed ratio (8:1) with the potential for inadequate tazobactam exposure to ensure piperacillin activity against Enterobacterales. Adult patients receiving continuous infusion (CI) of TZP and therapeutic drug monitoring (TDM) of both agents were evaluated. Demographic variables and other pertinent laboratory data were collected retrospectively. A population pharmacokinetic approach was used to select the best kidney function model predictive of TZP clearance (CL). The probability of target attainment (PTA), cumulative fraction of response (CFR) and the ratio between piperacillin and tazobactam were computed to identify optimal dosage regimens by continuous infusion across kidney function. This study included 257 critically ill patients (79.3% male) with intra-abdominal, bloodstream, and hospital-acquired pneumonia infections in 89.5% as the primary indication. The median (min-max range) age, body weight, and estimated glomerular filtration rate (eGFR) were 66 (23-93) years, 75 (39-310) kg, and 79.2 (6.4-234) mL/min, respectively. Doses of up to 22.5 g/day were used to optimize TZP based on TDM. The 2021 chronic kidney disease epidemiology equation in mL/min best modeled TZP CL. The ratio of piperacillin:tazobactam increased from 6:1 to 10:1 between an eGFR of <20 mL/min and >120 mL/min. At conventional doses, the PTA is below 90% when eGFR is ≥100 mL/min. Daily doses of 18 g/day and 22.5 g/day by CI are expected to achieve a >80% CFR when eGFR is 100-120 mL/min and >120-160 mL/min, respectively. Inadequate piperacillin and tazobactam exposure is likely in patients with eGFR ≥ 100 mL/min. Dose regimen adjustments informed by TDM should be evaluated in this specific population.


Gammaproteobacteria , beta-Lactamase Inhibitors , Adult , Humans , Male , Aged , Aged, 80 and over , Female , beta-Lactamase Inhibitors/pharmacokinetics , Anti-Bacterial Agents/pharmacokinetics , beta-Lactams , Retrospective Studies , Penicillanic Acid/therapeutic use , Penicillanic Acid/pharmacokinetics , Piperacillin, Tazobactam Drug Combination/pharmacokinetics , Piperacillin/pharmacokinetics , Tazobactam , beta-Lactamases , Microbial Sensitivity Tests
4.
Crit Care Explor ; 6(2): e1039, 2024 Feb.
Article En | MEDLINE | ID: mdl-38343444

OBJECTIVES: In patients with COVID-19 respiratory failure, controlled mechanical ventilation (CMV) is often necessary during the acute phases of the disease. Weaning from CMV to pressure support ventilation (PSV) is a key objective when the patient's respiratory functions improve. Limited evidence exists regarding the factors predicting a successful transition to PSV and its impact on patient outcomes. DESIGN: Retrospective observational cohort study. SETTING: Twenty-four Italian ICUs from February 2020 to May 2020. PATIENTS: Mechanically ventilated ICU patients with COVID-19-induced respiratory failure. INTERVENTION: The transition period from CMV to PSV was evaluated. We defined it as "failure of assisted breathing" if the patient returned to CMV within the first 72 hours. MEASUREMENTS AND MAIN RESULTS: Of 1260 ICU patients screened, 514 were included. Three hundred fifty-seven patients successfully made the transition to PSV, while 157 failed. Pao2/Fio2 ratio before the transition emerged as an independent predictor of a successful shift (odds ratio 1.00; 95% CI, 0.99-1.00; p = 0.003). Patients in the success group displayed a better trend in Pao2/Fio2, Paco2, plateau and peak pressure, and pH level. Subjects in the failure group exhibited higher ICU mortality (hazard ratio 2.08; 95% CI, 1.42-3.06; p < 0.001), an extended ICU length of stay (successful vs. failure 21 ± 14 vs. 27 ± 17 d; p < 0.001) and a longer duration of mechanical ventilation (19 ± 18 vs. 24 ± 17 d, p = 0.04). CONCLUSIONS: Our study emphasizes that the Pao2/Fio2 ratio was the sole independent factor associated with a failed transition from CMV to PSV. The unsuccessful transition was associated with worse outcomes.

5.
Antibiotics (Basel) ; 12(12)2023 Dec 14.
Article En | MEDLINE | ID: mdl-38136770

(1) Background: Piperacillin-tazobactam represents the first-line option for treating infections caused by full- or multi-susceptible Enterobacterales and/or Pseudomonas aeruginosa in critically ill patients. Several studies reported that attaining aggressive pharmacokinetic/pharmacodynamic (PK/PD) targets with beta-lactams is associated with an improved microbiological/clinical outcome. We aimed to assess the relationship between the joint PK/PD target attainment of continuous infusion (CI) piperacillin-tazobactam and the microbiological/clinical outcome of documented Gram-negative bloodstream infections (BSI) and/or ventilator-associated pneumonia (VAP) of critically ill patients treated with CI piperacillin-tazobactam monotherapy. (2) Methods: Critically ill patients admitted to the general and post-transplant intensive care unit in the period July 2021-September 2023 treated with CI piperacillin-tazobactam monotherapy optimized by means of a real-time therapeutic drug monitoring (TDM)-guided expert clinical pharmacological advice (ECPA) program for documented Gram-negative BSIs and/or VAP were retrospectively retrieved. Steady-state plasma concentrations (Css) of piperacillin and of tazobactam were measured, and the free fractions (f) were calculated according to respective plasma protein binding. The joint PK/PD target was defined as optimal whenever both the piperacillin fCss/MIC ratio was >4 and the tazobactam fCss/target concentration (CT) ratio was > 1 (quasi-optimal or suboptimal whenever only one or none of the two weas achieved, respectively). Multivariate logistic regression analysis was performed for testing variables potentially associated with microbiological outcome. (3) Results: Overall, 43 critically ill patients (median age 69 years; male 58.1%; median SOFA score at baseline 8) treated with CI piperacillin-tazobactam monotherapy were included. Optimal joint PK/PD target was attained in 36 cases (83.7%). At multivariate analysis, optimal attaining of joint PK/PD target was protective against microbiological failure (OR 0.03; 95%CI 0.003-0.27; p = 0.002), whereas quasi-optimal/suboptimal emerged as the only independent predictor of microbiological failure (OR 37.2; 95%CI 3.66-377.86; p = 0.002). (4) Conclusion: Optimized joint PK/PD target attainment of CI piperacillin-tazobactam could represent a valuable strategy for maximizing microbiological outcome in critically ill patients with documented Gram-negative BSI and/or VAP, even when sustained by extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales. In this scenario, implementing a real-time TDM-guided ECPA program may be helpful in preventing failure in attaining optimal joint PK/PD targets among critically ill patients. Larger prospective studies are warranted to confirm our findings.

6.
Intensive Care Med Exp ; 11(1): 77, 2023 Nov 14.
Article En | MEDLINE | ID: mdl-37962702

Extracorporeal life support (ECLS) for acute respiratory failure encompasses veno-venous extracorporeal membrane oxygenation (V-V ECMO) and extracorporeal carbon dioxide removal (ECCO2R). V-V ECMO is primarily used to treat severe acute respiratory distress syndrome (ARDS), characterized by life-threatening hypoxemia or ventilatory insufficiency with conventional protective settings. It employs an artificial lung with high blood flows, and allows improvement in gas exchange, correction of hypoxemia, and reduction of the workload on the native lung. On the other hand, ECCO2R focuses on carbon dioxide removal and ventilatory load reduction ("ultra-protective ventilation") in moderate ARDS, or in avoiding pump failure in acute exacerbated chronic obstructive pulmonary disease. Clinical indications for V-V ECLS are tailored to individual patients, as there are no absolute contraindications. However, determining the ideal timing for initiating extracorporeal respiratory support remains uncertain. Current ECLS equipment faces issues like size and durability. Innovations include intravascular lung assist devices (ILADs) and pumpless devices, though they come with their own challenges. Efficient gas exchange relies on modern oxygenators using hollow fiber designs, but research is exploring microfluidic technology to improve oxygenator size, thrombogenicity, and blood flow capacity. Coagulation management during V-V ECLS is crucial due to common bleeding and thrombosis complications; indeed, anticoagulation strategies and monitoring systems require improvement, while surface coatings and new materials show promise. Moreover, pharmacokinetics during ECLS significantly impact antibiotic therapy, necessitating therapeutic drug monitoring for precise dosing. Managing native lung ventilation during V-V ECMO remains complex, requiring a careful balance between benefits and potential risks for spontaneously breathing patients. Moreover, weaning from V-V ECMO is recognized as an area of relevant uncertainty, requiring further research. In the last decade, the concept of Extracorporeal Organ Support (ECOS) for patients with multiple organ dysfunction has emerged, combining ECLS with other organ support therapies to provide a more holistic approach for critically ill patients. In this review, we aim at providing an in-depth overview of V-V ECMO and ECCO2R, addressing various aspects of their use, challenges, and potential future directions in research and development.

7.
Antibiotics (Basel) ; 12(10)2023 Oct 10.
Article En | MEDLINE | ID: mdl-37887225

(1) Objectives: to describe the pharmacokinetic/pharmacodynamic (PK/PD) profile of continuous infusion (CI) meropenem in critical patients with documented Gram-negative infections undergoing continuous veno-venous hemodiafiltration (CVVHDF) and to assess the relationship with microbiological outcome. (2) Methods: Data were retrospectively retrieved for patients admitted to the general and the post-transplant intensive care units in the period October 2022-May 2023 who underwent CVVHDF during treatment with CI meropenem optimized by means of a real-time therapeutic drug monitoring (TDM)-based expert clinical pharmacological advice (ECPA) program for documented Gram-negative infections. Steady-state meropenem plasma concentrations were measured, and the free fractions (fCss) were calculated. Meropenem total clearance (CLtot) was calculated at each TDM assessment, and the impact of CVVHDF dose intensity and of residual diuresis on CLtot was investigated by means of linear regression. Optimal meropenem PK/PD target attainment was defined as an fCss/MIC ratio > 4. The relationship between meropenem PK/PD target attainment and microbiological outcome was assessed. (3) Results: A total of 24 critical patients (median age 68 years; male 62.5%) with documented Gram-negative infections were included. Median (IQR) meropenem fCss was 19.9 mg/L (17.4-28.0 mg/L). Median (IQR) CLtot was 3.89 L/h (3.28-5.29 L/h), and median (IQR) CVVHDF dose intensity was 37.4 mL/kg/h (33.8-44.6 mL/kg/h). Meropenem dosing adjustments were provided in 20 out of 24 first TDM assessments (83.3%, all decreases) and overall in 26 out of the 51 total ECPA cases (51.0%). Meropenem PK/PD target attainment was always optimal, and microbiological eradication was achieved in 90.5% of assessable cases. (4) Conclusion: the real-time TDM-guided ECPA program was useful in attaining aggressive PK/PD targeting with CI meropenem in critically ill patients undergoing high-intensity CVVHDF and allowed microbiological eradication in most cases with dosing regimens ranging between 125 and 500 mg q6h over 6 h.

9.
Int J Antimicrob Agents ; 62(2): 106884, 2023 Aug.
Article En | MEDLINE | ID: mdl-37302773

OBJECTIVES: Therapeutic drug monitoring (TDM) may be helpful in tailoring antimicrobial treatment, and expert interpretation of the results may make it more clinically useful. METHODS: This study aimed to assess retrospectively the first-year impact (July 2021 to June 2022) of a newly established expert clinical pharmacological advice (ECPA) programme based on TDM results in tailoring therapy with 18 antimicrobials hospital-wide in a tertiary university hospital. All patients having ≥1 ECPA were grouped in five cohorts [haematology, intensive care unit (ICU), paediatrics, medical wards and surgical wards]. Four indicators of performance were identified: total ECPAs; total ECPAs recommending dosing adjustments/total ECPAs both at first and at subsequent assessments; and turnaround time (TAT) of ECPAs, defined as optimal (<12 h), quasi-optimal (12-24 h), acceptable (24-48 h) or suboptimal (>48 h). RESULTS: A total of 8484 ECPAs were provided for tailoring treatment in 2961 patients, mostly admitted in the ICU (34.1%) and medical wards (32.0%). The proportion of ECPAs recommending dosing adjustments was >40% at first assessment (40.9% haematology; 62.9% ICU; 53.9% paediatrics; 59.1% medical wards; and 59.7% surgical wards), and decreased consistently at subsequent TDM assessments (20.7% haematology; 40.6% ICU; 37.4% paediatrics; 32.9% medical wards; and 29.2% surgical wards). The overall median TAT of the ECPAs was optimal (8.11 h). CONCLUSION: The TDM-guided ECPA programme was successful in tailoring treatment with a wide panel of antimicrobials hospital-wide. Expert interpretation by medical clinical pharmacologists, short TATs, and strict interaction with infectious diseases consultants and clinicians were crucial in achieving this.


Anti-Infective Agents , Drug Monitoring , Humans , Child , Drug Monitoring/methods , Retrospective Studies , Anti-Infective Agents/therapeutic use , Tertiary Care Centers , Hospitals, University
10.
Front Immunol ; 14: 1085610, 2023.
Article En | MEDLINE | ID: mdl-37207201

Introduction: Extracellular vesicles (EVs) and particles (EPs) represent reliable biomarkers for disease detection. Their role in the inflammatory microenvironment of severe COVID-19 patients is not well determined. Here, we characterized the immunophenotype, the lipidomic cargo and the functional activity of circulating EPs from severe COVID-19 patients (Co-19-EPs) and healthy controls (HC-EPs) correlating the data with the clinical parameters including the partial pressure of oxygen to fraction of inspired oxygen ratio (PaO2/FiO2) and the sequential organ failure assessment (SOFA) score. Methods: Peripheral blood (PB) was collected from COVID-19 patients (n=10) and HC (n=10). EPs were purified from platelet-poor plasma by size exclusion chromatography (SEC) and ultrafiltration. Plasma cytokines and EPs were characterized by multiplex bead-based assay. Quantitative lipidomic profiling of EPs was performed by liquid chromatography/mass spectrometry combined with quadrupole time-of-flight (LC/MS Q-TOF). Innate lymphoid cells (ILC) were characterized by flow cytometry after co-cultures with HC-EPs or Co-19-EPs. Results: We observed that EPs from severe COVID-19 patients: 1) display an altered surface signature as assessed by multiplex protein analysis; 2) are characterized by distinct lipidomic profiling; 3) show correlations between lipidomic profiling and disease aggressiveness scores; 4) fail to dampen type 2 innate lymphoid cells (ILC2) cytokine secretion. As a consequence, ILC2 from severe COVID-19 patients show a more activated phenotype due to the presence of Co-19-EPs. Discussion: In summary, these data highlight that abnormal circulating EPs promote ILC2-driven inflammatory signals in severe COVID-19 patients and support further exploration to unravel the role of EPs (and EVs) in COVID-19 pathogenesis.


COVID-19 , Humans , Immunity, Innate , Lymphocytes , Cytokines , Oxygen
11.
Int J Antimicrob Agents ; 62(2): 106852, 2023 Aug.
Article En | MEDLINE | ID: mdl-37192727

OBJECTIVES: To assess the pharmacokinetics/pharmacodynamics (PK/PD) of cefiderocol administered by continuous infusion (CI) in a case series of critically ill patients with carbapenem-resistant Acinetobacter baumannii (CRAB) infections undergoing continuous venovenous haemodiafiltration (CVVHDF). METHODS: Critically ill patients receiving cefiderocol by CI during CVVHDF for documented bloodstream infections (BSIs), ventilator-associated pneumonia (VAP), and/or complicated intrabdominal infections (cIAIs) caused by CRAB and undergoing therapeutic drug monitoring (TDM) from February 2022 to January 2023 were retrospectively assessed. Cefiderocol concentrations were determined at steady-state, and the free fraction (fCss) was calculated. Cefiderocol total clearance (CLtot) was determined at each TDM assessment. fCss/MIC ratio was selected as a PD determinant of cefiderocol efficacy and defined as optimal (>4), quasi-optimal (1-4), and suboptimal (<1). RESULTS: Five patients with documented CRAB infections (two BSI+VAP, two VAP, and one BSI+cIAI) were included. The maintenance dose of cefiderocol was 2 g q8h over 8 h by CI. Median average fCss was 26.5 mg/L (21.7-33.6 mg/L). Median CLtot was 4.84 L/h (2.04-5.22 L/h). Median CVVHDF dose was 41.1 mL/kg/h (35.5-44.9 mL/kg/h), and residual diuresis was reported in 4/5 cases. Optimal PK/PD target was attained in all cases, with a median cefiderocol fCss/MIC ratio of 14.9 (6.6-33.6). CONCLUSION: CI of full doses of cefiderocol could be a useful strategy to attain aggressive PK/PD targets for the treatment of severe CRAB infections in critically ill patients undergoing high-intensity CVVHDF and who have residual diuresis.


Acinetobacter baumannii , Continuous Renal Replacement Therapy , Hemodiafiltration , Humans , Anti-Bacterial Agents/therapeutic use , Critical Illness , Retrospective Studies , Carbapenems/pharmacology , Carbapenems/therapeutic use , Cefiderocol
12.
J Intensive Care ; 11(1): 21, 2023 May 19.
Article En | MEDLINE | ID: mdl-37208787

BACKGROUND: Long-term outcomes of patients treated with helmet noninvasive ventilation (NIV) are unknown: safety concerns regarding the risk of patient self-inflicted lung injury and delayed intubation exist when NIV is applied in hypoxemic patients. We assessed the 6-month outcome of patients who received helmet NIV or high-flow nasal oxygen for COVID-19 hypoxemic respiratory failure. METHODS: In this prespecified analysis of a randomized trial of helmet NIV versus high-flow nasal oxygen (HENIVOT), clinical status, physical performance (6-min-walking-test and 30-s chair stand test), respiratory function and quality of life (EuroQoL five dimensions five levels questionnaire, EuroQoL VAS, SF36 and Post-Traumatic Stress Disorder Checklist for the DSM) were evaluated 6 months after the enrollment. RESULTS: Among 80 patients who were alive, 71 (89%) completed the follow-up: 35 had received helmet NIV, 36 high-flow oxygen. There was no inter-group difference in any item concerning vital signs (N = 4), physical performance (N = 18), respiratory function (N = 27), quality of life (N = 21) and laboratory tests (N = 15). Arthralgia was significantly lower in the helmet group (16% vs. 55%, p = 0.002). Fifty-two percent of patients in helmet group vs. 63% of patients in high-flow group had diffusing capacity of the lungs for carbon monoxide < 80% of predicted (p = 0.44); 13% vs. 22% had forced vital capacity < 80% of predicted (p = 0.51). Both groups reported similar degree of pain (p = 0.81) and anxiety (p = 0.81) at the EQ-5D-5L test; the EQ-VAS score was similar in the two groups (p = 0.27). Compared to patients who successfully avoided invasive mechanical ventilation (54/71, 76%), intubated patients (17/71, 24%) had significantly worse pulmonary function (median diffusing capacity of the lungs for carbon monoxide 66% [Interquartile range: 47-77] of predicted vs. 80% [71-88], p = 0.005) and decreased quality of life (EQ-VAS: 70 [53-70] vs. 80 [70-83], p = 0.01). CONCLUSIONS: In patients with COVID-19 hypoxemic respiratory failure, treatment with helmet NIV or high-flow oxygen yielded similar quality of life and functional outcome at 6 months. The need for invasive mechanical ventilation was associated with worse outcomes. These data indicate that helmet NIV, as applied in the HENIVOT trial, can be safely used in hypoxemic patients. Trial registration Registered on clinicaltrials.gov NCT04502576 on August 6, 2020.

13.
J Crit Care ; 76: 154301, 2023 08.
Article En | MEDLINE | ID: mdl-37059003

PURPOSE: To explore pharmacokinetic/pharmacodynamic (PK/PD) profile of continuous infusion (CI) ceftazidime-avibactam for treating difficult-to-treat resistant Gram-negative (DTR-GN) infections in critical patients undergoing continuous venovenous haemodiafiltration (CVVHDF). MATERIALS AND METHODS: Patients treated with CI ceftazidime-avibactam for DTR-GN infections during CVVHDF were retrospectively assessed. Ceftazidime and avibactam concentrations were measured at steady-state and the free fraction (fCss) was calculated. Total clearance (CLtot) of both agents were calculated and the impact of CVVHDF intensity was assessed by linear regression. The joint PK/PD target of ceftazidime-avibactam was defined as optimal when both fCss/MIC≥4 for ceftazidime and fCss/CT > 1 for avibactam were achieved. Relationship between ceftazidime-avibactam PK/PD targets and microbiological outcome was assessed. RESULTS: Eight patients with DTR-GN infections were retrieved. Median fCss were 84.5 (73.7-87.7 mg/L) for ceftazidime and 24.8 mg/L (20.7-25.8 mg/L) for avibactam. Median CLtot was 2.39 L/h (2.05-2.96 L/h) for ceftazidime and 2.56 L/h (2.12-2.98 L/h) for avibactam. Median CVVHDF dose was 38.6 mL/h/kg (35.9-40.0 mL/kg/h). CLtot were linearly correlated with CVVHDF dose (r = 0.53;p = 0.03, and r = 0.64;p = 0.006, respectively). The joint PK/PD targets were optimal granting microbiological eradication in all the assessable cases. CONCLUSION: CI administration of 1.25-2.5 g q8h ceftazidime-avibactam may allow prompt attainment and maintenance of optimal joint PK/PD targets during high-intensity CVVHDF.


Ceftazidime , Continuous Renal Replacement Therapy , Humans , Ceftazidime/therapeutic use , Ceftazidime/pharmacology , Anti-Bacterial Agents , Critical Illness/therapy , Retrospective Studies , Microbial Sensitivity Tests
15.
Intensive Care Med Exp ; 11(1): 17, 2023 Mar 02.
Article En | MEDLINE | ID: mdl-36862343

BACKGROUND: The role of upper airways microbiota and its association with ventilator-associated pneumonia (VAP) development in mechanically ventilated (MV) patients is unclear. Taking advantage of data collected in a prospective study aimed to assess the composition and over-time variation of upper airway microbiota in patients MV for non-pulmonary reasons, we describe upper airway microbiota characteristics among VAP and NO-VAP patients. METHODS: Exploratory analysis of data collected in a prospective observational study on patients intubated for non-pulmonary conditions. Microbiota analysis (trough 16S-rRNA gene profiling) was performed on endotracheal aspirates (at intubation, T0, and after 72 h, T3) of patients with VAP (cases cohort) and a subgroup of NO-VAP patients (control cohort, matched according to total intubation time). RESULTS: Samples from 13 VAP patients and 22 NO-VAP matched controls were analyzed. At intubation (T0), patients with VAP revealed a significantly lower microbial complexity of the microbiota of the upper airways compared to NO-VAP controls (alpha diversity index of 84 ± 37 and 160 ± 102, in VAP and NO_VAP group, respectively, p-value < 0.012). Furthermore, an overall decrease in microbial diversity was observed in both groups at T3 as compared to T0. At T3, a loss of some genera (Prevotella 7, Fusobacterium, Neisseria, Escherichia-Shigella and Haemophilus) was found in VAP patients. In contrast, eight genera belonging to the Bacteroidetes, Firmicutes and Fusobacteria phyla was predominant in this group. However, it is unclear whether VAP caused dysbiosis or dysbiosis caused VAP. CONCLUSIONS: In a small sample size of intubated patients, microbial diversity at intubation was less in patients with VAP compared to patients without VAP.

16.
ASAIO J ; 69(1): 36-42, 2023 01 01.
Article En | MEDLINE | ID: mdl-35998214

The aim of this retrospective multicenter observational study is to test the feasibility and safety of a combined extracorporeal CO 2 removal (ECCO 2 R) plus renal replacement therapy (RRT) system to use an ultraprotective ventilator setting while maintaining (1) an effective support of renal function and (2) values of pH within the physiologic limits in a cohort of coronavirus infectious disease 2019 (COVID-19) patients. Among COVID-19 patients admitted to the intensive care unit of 9 participating hospitals, 27 patients with acute respiratory distress syndrome (ARDS) and acute kidney injury (AKI) requiring invasive mechanical ventilation undergoing ECCO 2 R-plus-RRT treatment were included in the analysis. The treatment allowed to reduce V T from 6.0 ± 0.6 mL/kg at baseline to 4.8 ± 0.8, 4.6 ± 1.0, and 4.3 ± 0.3 mL/kg, driving pressure (ΔP) from 19.8 ± 2.5 cm H 2 O to 14.8 ± 3.6, 14.38 ± 4.1 and 10.2 ± 1.6 cm H 2 O after 24 hours, 48 hours, and at discontinuation of ECCO 2 R-plus-RRT (T3), respectively ( p < 0.001). PaCO 2 and pH remained stable. Plasma creatinine decreased over the study period from 3.30 ± 1.27 to 1.90 ± 1.30 and 1.27 ± 0.90 mg/dL after 24 and 48 hours of treatment, respectively ( p < 0.01). No patient-related events associated with the extracorporeal system were reported. These data show that in patients with COVID-19-induced ARDS and AKI, ECCO 2 R-plus-RRT is effective in allowing ultraprotective ventilator settings while maintaining an effective support of renal function and values of pH within physiologic limits.


Acute Kidney Injury , COVID-19 , Communicable Diseases , Respiratory Distress Syndrome , Humans , Respiration, Artificial , COVID-19/complications , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/complications , Renal Replacement Therapy , Communicable Diseases/complications , Acute Kidney Injury/etiology , Acute Kidney Injury/therapy , Lung
17.
Respir Care ; 68(1): 1-7, 2023 01.
Article En | MEDLINE | ID: mdl-36379641

BACKGROUND: Environmental contamination by SARS-CoV-2 from patients with COVID-19 undergoing noninvasive ventilation (NIV) in the ICU is still under investigation. This study set out to investigate the presence of SARS-CoV-2 on surfaces near subjects receiving NIV in the ICU under controlled conditions (ie, use of dual-limb circuits, filters, adequate room ventilation). METHODS: This was a single-center, prospective, observational study in the ICU of a tertiary teaching hospital. Four surface sampling areas, at increasing distance from subject's face, were identified; and each one was sampled at fixed intervals: 6, 12, and 24 h. The presence of SARS-CoV-2 was detected with real-time reverse transcriptase-polymerase-chain-reaction (RT-PCR) test on environmental swabs; the RT-PCR assay targeted the SARS-CoV-2 virus nucleocapsid N1 and N2 genes and the human RNase P gene as internal control. RESULTS: In a total of 256 collected samples, none were positive for SARS-CoV-2 genetic material, whereas 21 samples (8.2%) tested positive for RNase P, thus demonstrating the presence of genetic material unrelated to SARS-CoV-2. CONCLUSIONS: Our data show that application of NIV in an appropriate environment and with correct precautions leads to no sign of surface environmental contamination. Accordingly, our data support the idea that use of NIV in the ICU is safe both for health care workers and for other patients.


COVID-19 , Equipment Contamination , Noninvasive Ventilation , Humans , Prospective Studies , Ribonuclease P , SARS-CoV-2 , Intensive Care Units
18.
Artif Organs ; 47(4): 731-739, 2023 Apr.
Article En | MEDLINE | ID: mdl-36394379

BACKGROUND: Veno-venous extracorporeal life support (V-V ECLS or V-V ECMO) has been adopted as a rescue support in severe cases of COVID-19 ARDS. Initial reports on the use of V-V ECLS in COVID-19 patients reported very high mortality rates (57%-94%), but subsequent studies showed much lower rates (30%-40%). The aim of this study is to analyze demographic features, clinical course and outcomes of COVID-19 treated with V-V ECLS during the Italian 'third wave', in which the alpha variant was prevalent in the country. METHODS: Single-center, retrospective observational study conducted at the ECLS referral center of a teaching hospital in Italy from January 1st, 2021 and October 31st, 2021. RESULTS: Between January and October 2021, 18 consecutive adult patients who underwent V-V ECLS for severe ARDS due to COVID-19 were enrolled. Thirteen patients (72.2%) were male, and their median age was 50 years; the median P/F ratio before V-V ECLS initiation was 43 mm Hg (IQR, 40; 56), and the median RESP score was 0.5 (IQR, -2.25; 1.0). The mortality rate at 90 days was 55.6, compared to 55.7% in non-COVID patients in our center (p > 0.05); the median duration of ECLS was 29 days (IQR, 11; 32), compared to 10 days (IQR, 8; 15), in non-COVID patients (p = 0.004). Incidence of complications was high. CONCLUSIONS: In patients with COVID-19 ARDS receiving V-V ECLS, unadjusted mortality was similar to pre-pandemic V-V ECLS cases, while the duration of ECLS was almost three times longer and with frequent complications. This could be partly explained by the selection of very sick patients at the baseline that evolved to multiorgan failure during the course of ECLS.


COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Adult , Humans , Male , Middle Aged , Female , COVID-19/complications , COVID-19/therapy , SARS-CoV-2 , Retrospective Studies
19.
Crit Care ; 26(1): 178, 2022 06 14.
Article En | MEDLINE | ID: mdl-35701812

BACKGROUND: Therapeutic drug monitoring (TDM) may represent an invaluable tool for optimizing antimicrobial therapy in septic patients, but extensive use is burdened by barriers. The aim of this study was to assess the impact of a newly established expert clinical pharmacological advice (ECPA) program in improving the clinical usefulness of an already existing TDM program for emerging candidates in tailoring antimicrobial therapy among critically ill patients. METHODS: This retrospective observational study included an organizational phase (OP) and an assessment phase (AP). During the OP (January-June 2021), specific actions were organized by MD clinical pharmacologists together with bioanalytical experts, clinical engineers, and ICU clinicians. During the AP (July-December 2021), the impact of these actions in optimizing antimicrobial treatment of the critically ill patients was assessed. Four indicators of performance of the TDM-guided real-time ECPA program were identified [total TDM-guided ECPAs July-December 2021/total TDM results July-December 2020; total ECPA dosing adjustments/total delivered ECPAs both at first assessment and overall; and turnaround time (TAT) of ECPAs, defined as optimal (< 12 h), quasi-optimal (12-24 h), acceptable (24-48 h), suboptimal (> 48 h)]. RESULTS: The OP allowed to implement new organizational procedures, to create a dedicated pathway in the intranet system, to offer educational webinars on clinical pharmacology of antimicrobials, and to establish a multidisciplinary team at the morning bedside ICU meeting. In the AP, a total of 640 ECPAs were provided for optimizing 261 courses of antimicrobial therapy in 166 critically ill patients. ECPAs concerned mainly piperacillin-tazobactam (41.8%) and meropenem (24.9%), and also other antimicrobials had ≥ 10 ECPAs (ceftazidime, ciprofloxacin, fluconazole, ganciclovir, levofloxacin, and linezolid). Overall, the pre-post-increase in TDM activity was of 13.3-fold. TDM-guided dosing adjustments were recommended at first assessment in 61.7% of ECPAs (10.7% increases and 51.0% decreases), and overall in 45.0% of ECPAs (10.0% increases and 35.0% decreases). The overall median TAT was optimal (7.7 h) and that of each single agent was always optimal or quasi-optimal. CONCLUSIONS: Multidisciplinary approach and timely expert interpretation of TDM results by MD Clinical Pharmacologists could represent cornerstones in improving the cost-effectiveness of an antimicrobial TDM program for emerging TDM candidates.


Anti-Infective Agents , Drug Monitoring , Anti-Bacterial Agents , Anti-Infective Agents/therapeutic use , Critical Illness/therapy , Drug Monitoring/methods , Humans , Meropenem
...