Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 14(35): 12722-12735, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35997103

RESUMEN

With their unique structural, optical and electrical properties, III-V nanowires (NWs) are an extremely attractive option for the direct growth of III-Vs on Si for tandem solar cell applications. Here, we introduce a core-shell GaAs/GaInP NW solar cell grown by molecular beam epitaxy on a patterned Si substrate, and we present an in-depth investigation of its optoelectronic properties and limitations. We report a power conversion efficiency of almost 3.7%, and a state-of-the-art open-circuit voltage (VOC) for a NW array solar cell on Si of 0.65 V. We also present the first quantification of the quasi-Fermi level splitting in NW array solar cells using hyperspectral photoluminescence measurements. A value of 0.84 eV is obtained at 1 sun (1.01 eV at 81 suns), which is significantly higher than qVOC. It indicates NWs with a better intrinsic optoelectronic quality than what could be expected from TEM images or deduced from electrical measurements. Optical and electronic simulations provide insights into the main absorption and electrical losses, and guidelines to design and fabricate higher-efficiency devices. It suggests that improvements at the n-type contact (GaInP/ITO) are key to unlocking the potential of next generation NW solar cells.

2.
Nanotechnology ; 33(18)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35051915

RESUMEN

Cathodoluminescence mapping is used as a contactless method to probe the electron concentration gradient of Te-doped GaAs nanowires. The room temperature and low temperature (10 K) cathodoluminescence analysis method previously developed for GaAs:Si is first validated on five GaAs:Te thin film samples, before extending it to the two GaAs:Te NW samples. We evidence an electron concentration gradient ranging from below 1 × 1018cm-3to 3.3 ×1018cm-3along the axis of a GaAs:Te nanowire grown at 640 °C, and a homogeneous electron concentration of around 6-8 × 1017cm-3along the axis of a GaAs:Te nanowire grown at 620 °C. The differences in the electron concentration levels and gradients between the two nanowires is attributed to different Te incorporation efficiencies by vapor-solid and vapor-liquid-solid processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA