Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Genes (Basel) ; 14(7)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37510325

RESUMEN

SRS (SHI-related sequence) transcription factors play a crucial role in plant growth, development, and abiotic stress response. Although Brassica napus (B. napus) is one of the most important oil crops in the world, the role of SRS genes in B. napus (BnSRS) has not been well investigated. Therefore, we employed a bioinformatics approach to identify BnSRS genes from genomic data and investigated their characteristics, functions, and expression patterns, to gain a better understanding of how this gene family is involved in plant development and growth. The results revealed that there were 34 BnSRS gene family members in the genomic sequence of B. napus, unevenly distributed throughout the sequence. Based on the phylogenetic analysis, these BnSRS genes could be divided into four subgroups, with each group sharing comparable conserved motifs and gene structure. Analysis of the upstream promoter region showed that BnSRS genes may regulate hormone responses, biotic and abiotic stress response, growth, and development in B. napus. The protein-protein interaction analysis revealed the involvement of BnSRS genes in various biological processes and metabolic pathways. Our analysis of BnSRS gene expression showed that 23 BnSRS genes in the callus tissue exhibited a dominant expression pattern, suggesting their critical involvement in cell dedifferentiation, cell division, and tissue development. In addition, association analysis between genotype and agronomic traits revealed that BnSRS genes may be linked to some important agronomic traits in B. napus, suggesting that BnSRS genes were widely involved in the regulation of important agronomic traits (including C16.0, C18.0, C18.1, C18.2 C18.3, C20.1, C22.1, GLU, protein, TSW, and FFT). In this study, we predicted the evolutionary relationships and potential functions of BnSRS gene family members, providing a basis for the development of BnSRS gene functions which could facilitate targeted functional studies and genetic improvement for elite breeding in B. napus.


Asunto(s)
Brassica napus , Brassica napus/metabolismo , Filogenia , Fitomejoramiento , Redes y Vías Metabólicas , Regiones Promotoras Genéticas
5.
Front Plant Sci ; 14: 1118339, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37021309

RESUMEN

Ubiquitin-conjugating enzyme (UBC) is a critical part of the ubiquitin-proteasome pathway and plays crucial roles in growth, development and abiotic stress response in plants. Although UBC genes have been detected in several plant species, characterization of this gene family at the whole-genome level has not been conducted in Brassica napus. In the present study, 200 putative BnUBCs were identified in B. napus, which were clustered into 18 subgroups based on phylogenetic analysis. BnUBCs within each subgroup showed relatively conserved gene architectures and motifs. Moreover, the gene expression patterns in various tissues as well as the identification of cis-acting regulatory elements in BnUBC promoters suggested further investigation of their potential functions in plant growth and development. Furthermore, three BnUBCs were predicted as candidate genes for regulating agronomic traits related to oil content and yield through association mapping. In conclusion, this study provided a wealth of information on the UBC family in B. napus and revealed their effects on oil content and yield, which will aid future functional research and genetic breeding of B. napus.

6.
Methods Mol Biol ; 2638: 67-91, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36781636

RESUMEN

Oil seed rape (Braasica napus L.) is ranked second among oil seed crops cultivated globally for edible oil for human, and seed cake for animal consumption. Recent genetic and genomics advancements highlighted the diversity that exists within B. napus, which is largely discovered using the most promising genetic markers called single nucleotide polymorphism (SNP). Their calling rate is also enhanced to ~100 folds after the continuous advancements in the next generation sequencing (NGS) technologies. As the high throughput of NGS resulted in multi-Giga bases data, the detailed quality control (QC) prior to downstream analyses is a pre-requisite. It mainly involved the removal of false positives, missing proportions, filtering of low-quality SNPs, and adjustments of minor-allele frequency and heterozygosity. After marker-trait association, for conformation of target SNPs, validations of SNPs can be performed using various methods, especially allele-specific PCR assay-based methods have been utilized for SNP genotyping of genes targeting agronomic traits and somaclonal variations occurred during transgenic studies. In the present study, the authors mainly argue on the genotypic progress, and pipelines/methods that are being used for detection, calling, filtering, and validation of SNPs. Also, insight is provided into the application of SNPs in linkage and association mapping, including QTL mapping and genome-wide association studies targeting mainly developmental traits related to the root system and plant architecture, flowering time, silique, and oil quality. Briefly, the present study provides the recent information and recommendations on the SNP genotyping methods and its applications, which can be useful for marker-assisted breeding in B. napus and other crops.


Asunto(s)
Brassica napus , Sitios de Carácter Cuantitativo , Humanos , Estudio de Asociación del Genoma Completo/métodos , Brassica napus/genética , Fitomejoramiento , Mapeo Cromosómico , Polimorfismo de Nucleótido Simple
7.
Int J Mol Sci ; 23(24)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36555357

RESUMEN

Trehalose and trehalose-6 phosphate played important roles in floral organ development, embryonic development, cell morphogenesis, and signal transduction under abiotic stress. However, little is known about the trehalose-6-phosphate synthase (TPS) gene family in Brassica napus. In this study, in total, 26 TPS genes in B. napus (BnTPS genes) were identified and classified into two groups. In each group, the BnTPS genes showed relatively conserved gene structures. The protein-protein interaction (PPI) network and enrichment analysis indicated that BnTPS genes were involved in the glycolysis/gluconeogenesis, fructose and mannose metabolism, galactose metabolism, pentose phosphate pathway, carbohydrate transmembrane transport, trehalose-phosphatase activity, etc. The expression of BnTPS genes varied greatly across different tissues, while most of the BnTPS genes showed a considerable improvement in expression under different abiotic stresses, indicating that BnTPS genes were significantly responsive to the abiotic treatments. In addition, the association mapping analysis revealed that eight BnTPS genes were potential regulators of particular agronomic traits. Among them, the gene BnTPS23 was significantly associated with the primary flowering time (PFT), full flowering time (FFT1), and final flowering time (FFT2), suggesting that BnTPS genes may play an important role in regulating key agronomic traits in B. napus. In summary, our research provides a better understanding of BnTPS genes, facilitates the breeding of superior B. napus varieties, and paves the way for future functional studies.


Asunto(s)
Brassica napus , Brassica napus/metabolismo , Genes de Plantas , Trehalosa/genética , Trehalosa/metabolismo , Fitomejoramiento , Regulación de la Expresión Génica de las Plantas , Filogenia
8.
Front Plant Sci ; 13: 998082, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340404

RESUMEN

Crop genomics and breeding CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) proteins belong to a small peptide family in plants. During plant development, CLE gene family members play a pivotal role in regulating cell-to-cell communication and stem cell maintenance. However, the evolutionary process and functional importance of CLEs are unclear in Brassicaceae. In this study, a total of 70 BnCLEs were identified in Brassica napus (2n = 4x = 38, AnCn): 32 from the An subgenome, 36 from the Cn subgenome, and 2 from the unanchored subgenome. Meanwhile, 29 BrCLE and 32 BoCLE genes were explored in Brassica rapa (2n = 2x = 20, Ar) and Brassica oleracea (2n = 2x = 18, Co). Phylogenetic analysis revealed that 163 CLEs derived from three Brassica species and Arabidopsis thaliana can be divided into seven subfamilies. Homology and synteny analyses indicated whole-genome triplication (WGT) and segmental duplication may be the major contributors to the expansion of CLE family. In addition, RNA-seq and qPCR analysis indicated that 19 and 16 BnCLEs were more highly expressed in immature seeds and roots than in other tissues. Some CLE gene pairs exhibited different expression patterns in the same tissue, which indicated possible functional divergence. Furthermore, genetic variations and regional association mapping analysis indicated that 12 BnCLEs were potential genes for regulating important agronomic traits. This study provided valuable information to understand the molecular evolution and biological function of CLEs in B. napus and its diploid progenitors, which will be helpful for genetic improvement of high-yield breeding in B. napus.

9.
Front Plant Sci ; 13: 1061196, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407634

RESUMEN

Rapeseed (Brassica napus) is an allotetraploid crop that is the main source of edible oils and feed proteins in the world. The ideal plant architecture breeding is a major objective of rapeseed breeding and determining the appropriate plant height is a key element of the ideal plant architecture. Therefore, this study aims to improve the understanding of the genetic controls underlying plant height. The plant heights of 230 rapeseed accessions collected worldwide were investigated in field experiments over two consecutive years in Wuhan, China. Whole-genome resequencing of these accessions yielded a total of 1,707,194 informative single nucleotide polymorphisms (SNPs) that were used for genome-wide association analysis (GWAS). GWAS and haplotype analysis showed that BnaA01g09530D, which encodes BRASSINOSTEROID-INSENSITIVE 2 and belongs to the GLYCOGEN SYNTHASE KINASE 3 (GSK3) family, was significantly associated with plant height in B. napus. Moreover, a total of 31 BnGSK3s with complete domains were identified from B. napus genome and clustered into four groups according to phylogenetic analysis, gene structure, and motif distribution. The expression patterns showed that BnGSK3s exhibited significant differences in 13 developmental tissues in B. napus, suggesting that BnGSK3s may be involved in tissue-specific development. Sixteen BnGSK3 genes were highly expressed the in shoot apical meristem, which may be related to plant height or architecture development. These results are important for providing new haplotypes of plant height in B. napus and for extending valuable genetic information for rapeseed genetic improvement of plant architecture.

10.
Front Plant Sci ; 13: 1009998, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311064

RESUMEN

Alternative splicing (AS) is an important regulatory process that affects plant development and stress responses by greatly increasing the complexity of transcriptome and proteome. To understand how the AS landscape of B. napus changes in response to abiotic stresses, we investigated 26 RNA-seq libraries, including control and treatments with cold, dehydration, salt, and abscisic acid (ABA) at two different time points, to perform comparative alternative splicing analysis. Apparently, AS events increased under all stresses except dehydration for 1 h, and intron retention was the most common AS mode. In addition, a total of 357 differential alternative splicing (DAS) genes were identified under four abiotic stresses, among which 81 DAS genes existed in at least two stresses, and 276 DAS genes were presented under only one stress. A weighted gene co-expression network analysis (WGCNA) based on the splicing isoforms, rather than the genes, pinpointed out 23 co-expression modules associated with different abiotic stresses. Among them, a number of significant hub genes were also found to be DAS genes, which encode key isoforms involved in responses to single stress or multiple stresses, including RNA-binding proteins, transcription factors, and other important genes, such as RBP45C, LHY, MYB59, SCL30A, RS40, MAJ23.10, and DWF4. The splicing isoforms of candidate genes identified in this study could be a valuable resource for improving tolerance of B. napus against multiple abiotic stresses.

11.
Front Plant Sci ; 13: 983786, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35979083

RESUMEN

Cupin_1 domain-containing proteins (CDPs) are ubiquitously present in higher plants, which are known to play essential roles in various biological processes. In this study, we carried out genome-wide characterization and systematic investigation of the CDP genes in Brassica napus. A total of 96 BnCDPs, including 71 germin-like proteins (GLPs; proteins with a single cupin_1 domain) and 25 CDP bicupins (proteins with two cupin_1 domains), were identified and clustered into six distinct subfamilies (I-VI) based on the phylogenic analysis, gene structure and motif distribution. Further analysis indicated that whole-genome duplication (WGD) and segmental duplication are main contributors to the species-specific expansion of the BnCDP gene family, and all the duplicated genes subsequently underwent strong purification selection. The promoter region of BnCDPs showed enrichment of cis-regulatory elements associated with development, hormone and stress, as well as transcription factor binding sites, which validates the prediction that BnCDPs are widely involved in plant growth and biotic and abiotic stress responses. The BnCDPs in different subfamilies exhibited obvious differences in expression among 30 developmental tissues/stages of B. napus, implying that BnCDPs may be involved in tissue- and stage-specific developmental processes. Similar trends in expression of most BnCDPs were observed under Sclerotinia sclerotiorum inoculation and four abiotic stresses (dehydration, cold, ABA and salinity), particularly the BnGLPs in subfamily I and III with single cupin_1 domain, revealing that BnCDPs are of great importance in the environmental adaption of B. napus. We then performed a genome-wide association study (GWAS) of 274 B. napus core germplasms on S. sclerotiorum resistance and identified four significantly associated loci harboring five BnGLPs. The expression levels of two candidate genes, BnGLP1.A08 and BnGLP1.C08, were significantly correlated with S. sclerotiorum resistance. Their functional responses to multiple stages of S. sclerotiorum inoculation and four abiotic stresses were further examined through qPCR. Overall, this study provides rich resources for research on the function and evolutionary playground of CDP genes.

12.
Int J Mol Sci ; 23(11)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35682945

RESUMEN

E3 ligases promote protein ubiquitination and degradation, which regulate every aspect of eukaryotic life. The Ariadne (ARI) proteins of RBR (ring between ring fingers) protein subfamily has been discovered as a group of potential E3 ubiquitin ligases. Only a few available research studies show their role in plant adaptations processes against the external environment. Presently, the functions of ARI proteins are largely unknown in plants. Therefore, in this study, we performed genome-wide analysis to identify the ARI gene family and explore their potential importance in B. napus. A total of 39 ARI genes were identified in the B. napus genome and were classified into three subfamilies (A, B and C) based on phylogenetic analysis. The protein-protein interaction networks and enrichment analysis indicated that BnARI genes could be involved in endoreduplication, DNA repair, proteasome assembly, ubiquitination, protein kinase activity and stress adaptation. The transcriptome data analysis in various tissues provided us an indication of some BnARI genes' functional importance in tissue development. We also identified potential BnARI genes that were significantly responsive towards the abiotic stresses. Furthermore, eight BnARI genes were identified as candidate genes for multiple agronomic traits through association mapping analysis in B. napus; among them, BnaA02g12100D, which is the ortholog of AtARI8, was significantly associated with ten agronomic traits. This study provided useful information on BnARI genes, which could aid targeted functional research and genetic improvement for breeding in B. napus.


Asunto(s)
Brassica napus , Brassica napus/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ligasas/metabolismo , Filogenia , Fitomejoramiento
13.
Front Plant Sci ; 13: 829668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251101

RESUMEN

Serine/arginine-rich (SR) proteins are indispensable factors for RNA splicing, and they play important roles in development and abiotic stress responses. However, little information on SR genes in Brassica napus is available. In this study, 59 SR genes were identified and classified into seven subfamilies: SR, SCL, RS2Z, RSZ, RS, SR45, and SC. In each subfamily, the genes showed relatively conserved structures and motifs, but displayed distinct expression patterns in different tissues and under abiotic stress, which might be caused by the varied cis-acting regulatory elements among them. Transcriptome datasets from Pacbio/Illumina platforms showed that alternative splicing of SR genes was widespread in B. napus and the majority of paralogous gene pairs displayed different splicing patterns. Protein-protein interaction analysis indicated that SR proteins were involved in the regulation of the whole lifecycle of mRNA, from synthesis to decay. Moreover, the association mapping analysis suggested that 12 SR genes were candidate genes for regulating specific agronomic traits, which indicated that SR genes could affect the development and hence influence the important agronomic traits of B. napus. In summary, this study provided elaborate information on SR genes in B. napus, which will aid further functional studies and genetic improvement of agronomic traits in B. napus.

14.
Front Plant Sci ; 13: 1080999, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589070

RESUMEN

Rapeseed (Brassica napus L.) is a crucial oil crop cultivated worldwide. First branch height, an essential component of rapeseed plant architecture, has an important effect on yield and mechanized harvesting; however, the underlying genetic mechanism remains unclear. In this study, based on the 60K single nucleotide polymorphism array and a recombinant inbred lines population derived from M083 and 888-5, a total of 19 QTLs were detected in five environments, distributed on linkage groups A02, A09, A10, C06, and C07, which explained phenotypic variation ranging from 4.87 to 29.87%. Furthermore, 26 significant SNPs were discovered on Chr.A02 by genome-wide association study in a diversity panel of 324 re-sequencing accessions. The major QTL of the first branch height trait was co-located on Chr.A02 by integrating linkage mapping and association mapping. Eleven candidate genes were screened via allelic variation analysis, inter-subgenomic synteny analysis, and differential expression of genes in parental shoot apical meristem tissues. Among these genes, BnaA02g13010D, which encodes a TCP transcription factor, was confirmed as the target gene according to gene function annotation, haplotype analysis, and full-length gene sequencing, which revealed that TATA insertion/deletion in the promoter region was closely linked to significantly phenotypic differences BnaA02.TCP1 M083 overexpression resulted in decreased branch height and increased branch number in Arabidopsis. These results provide a genetic basis for first branch height and the ideal architecture of B. napus.

15.
G3 (Bethesda) ; 11(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-33836054

RESUMEN

Plant height is a crucial element related to plant architecture that influences the seed yield of oilseed rape (Brassica napus L.). In this study, we isolated a natural B. napus mutant, namely a semi-dwarf mutant (sdw-e), which exhibits a 30% reduction in plant height compared with Zhongshuang 11-HP (ZS11-HP). Quantitative trait locus sequencing (QTL-seq) was conducted using two extreme DNA bulks in F2 populations in Wuchang-2017 derived from ZS11-HP × sdw-e to identify QTLs associated with plant height. The result suggested that two QTL intervals were located on chromosome A10. The F2 population consisting of 200 individuals in Yangluo-2018 derived from ZS11-HP × sdw-e was used to construct a high-density linkage map using whole-genome resequencing. The high-density linkage map harbored 4323 bin markers and covered a total distance of 2026.52 cM with an average marker interval of 0.47 cM. The major QTL for plant height named qPHA10 was identified on linkage group A10 by interval mapping and composite interval mapping methods. The major QTL qPHA10 was highly consistent with the QTL-seq results. And then, we integrated the variation sites and expression levels of genes in the major QTL interval to predict the candidate genes. Thus, the identified QTL and candidate genes could be used in marker-assisted selection for B. napus breeding in the future.


Asunto(s)
Brassica napus , Sitios de Carácter Cuantitativo , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple
16.
Plant Biotechnol J ; 19(3): 615-630, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33073445

RESUMEN

Rapeseed (Brassica napus L.) is a recent allotetraploid crop, which is well known for its high oil production. Here, we report a high-quality genome assembly of a typical semi-winter rapeseed cultivar, 'Zhongshuang11' (hereafter 'ZS11'), using a combination of single-molecule sequencing and chromosome conformation capture (Hi-C) techniques. Most of the high-confidence sequences (93.1%) were anchored to the individual chromosomes with a total of 19 centromeres identified, matching the exact chromosome count of B. napus. The repeat sequences in the A and C subgenomes in B. napus expanded significantly from 500 000 years ago, especially over the last 100 000 years. These young and recently amplified LTR-RTs showed dispersed chromosomal distribution but significantly preferentially clustered into centromeric regions. We exhaustively annotated the nucleotide-binding leucine-rich repeat (NLR) gene repertoire, yielding a total of 597 NLR genes in B. napus genome and 17.4% of which are paired (head-to-head arrangement). Based on the resequencing data of 991 B. napus accessions, we have identified 18 759 245 single nucleotide polymorphisms (SNPs) and detected a large number of genomic regions under selective sweep among the three major ecotype groups (winter, semi-winter and spring) in B. napus. We found 49 NLR genes and five NLR gene pairs colocated in selective sweep regions with different ecotypes, suggesting a rapid diversification of NLR genes during the domestication of B. napus. The high quality of our B. napus 'ZS11' genome assembly could serve as an important resource for the study of rapeseed genomics and reveal the genetic variations associated with important agronomic traits.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica rapa/genética , Elementos Transponibles de ADN/genética , Resistencia a la Enfermedad , Genoma de Planta/genética , Humanos
17.
Front Microbiol ; 11: 507036, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178139

RESUMEN

The potential infection biology of Plasmodiophora brassicae in resistant hosts and non-hosts is still not completely understood. Clubroot resistance assay on European clubroot differentials (ECD) set revealed that ECD10 (Brassica napus) and ECD4 (Brassica rapa) show a complete resistance to the tested P. brassicae isolate in contrast to highly susceptible hosts Westar (B. napus) and ECD5 (B. rapa). Previously, we used fluorescent probe-based confocal microscopy (FCM) to refine the life cycle of P. brassicae and indicate the important time points during its infection in Arabidopsis. Here, we used FCM to systematically investigate the infection of P. brassicae in two resistant host species ECD10 and ECD4 and two non-host crops wheat and barley at each indicated time points, compared with two susceptible hosts Westar and ECD5. We found that P. brassicae can initiate the primary infection phase and produce uninucleate primary plasmodia in both resistant hosts and non-hosts just like susceptible hosts at 2 days post-inoculation (dpi). Importantly, P. brassicae can develop into zoosporangia and secondary zoospores and release the secondary zoospores from the zoosporangia in resistant hosts at 7 dpi, comparable to susceptible hosts. However, during the secondary infection phase, no secondary plasmodium was detected in the cortical cells of both resistant hosts in contrast to massive secondary plasmodia present in the cortex tissue of two susceptible hosts leading to root swelling at 15 dpi. In both non-host crops, only uninucleate primary plasmodia were observed throughout roots at 7 and 15 dpi. Quantitative PCR based on DNA revealed that the biomass of P. brassicae has no significant increase from 2 dpi in non-host plants and from 7 dpi in resistant host plants, compared to the huge biomass increase in susceptible host plants from 2 to 25 dpi. Our study reveals that the primary infection phase in the root epidermis and the secondary infection phase in the cortex tissue are, respectively, blocked in non-hosts and resistant hosts, contributing to understanding of cellular and molecular mechanisms underlying clubroot non-host and host resistance.

18.
G3 (Bethesda) ; 10(9): 3201-3211, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32646913

RESUMEN

Chlorophyll biosynthesis and chloroplast development are crucial to photosynthesis and plant growth, but their regulatory mechanism remains elusive in many crop species. We isolated a Brassica napus yellow-virescent leaf (yvl) mutant, which exhibited yellow-younger-leaf and virescent-older-leaf with decreased chlorophyll accumulation and delayed chloroplast development. We mapped yvl locus to a 70-kb interval between molecular markers yvl-O10 and InDel-O6 on chromosome A03 in BC2F2 population using whole genome re-sequencing and bulked segregant analysis. The mutant had a 'C' to 'T' substitution in the coding sequence of BnaA03.CHLH, which encodes putative H subunit of Mg-protoporphyrin IX chelatase (CHLH). The mutation resulted in an imperfect protein structure and reduced activity of CHLH. It also hampered the plastid encoded RNA polymerase which transcribes regulatory genes of photosystem II and I. Consequently, the chlorophyll a/b and carotenoid contents were reduced and the chloroplast ultrastructure was degraded in yvl mutant. These results explain that a single nucleotide mutation in BnaA03.CHLH impairs PEP activity to disrupt chloroplast development and chlorophyll biosynthesis in B. napus.


Asunto(s)
Brassica napus , Brassica napus/genética , Clorofila , Clorofila A , Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Hojas de la Planta , Proteínas de Plantas/genética
19.
Plant J ; 103(2): 843-857, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32270540

RESUMEN

Brassica napus is a recent allopolyploid derived from the hybridization of Brassica rapa (Ar Ar ) and Brassica oleracea (Co Co ). Because of the high sequence similarity between the An and Cn subgenomes, it is difficult to provide an accurate landscape of the whole transcriptome of B. napus. To overcome this problem, we applied a single-molecule long-read isoform sequencing (Iso-Seq) technique that can produce long reads to explore the complex transcriptome of B. napus at the isoform level. From the Iso-Seq data, we obtained 147 698 non-redundant isoforms, capturing 37 403 annotated genes. A total of 18.1% (14 934/82 367) of the multi-exonic genes showed alternative splicing (AS). In addition, we identified 549 long non-coding RNAs, the majority of which displayed tissue-specific expression profiles, and detected 7742 annotated genes that possessed isoforms containing alternative polyadenylation sites. Moreover, 31 591 AS events located in open reading frames (ORFs) lead to potential protein isoforms by in-frame or frameshift changes in the ORF. Illumina RNA sequencing of five tissues that were pooled for Iso-Seq was also performed and showed that 69% of the AS events were tissue-specific. Our data provide abundant transcriptome resources for a transcript isoform catalog of B. napus, which will facilitate genome reannotation, strengthen our understanding of the B. napus transcriptome and be applied for further functional genomic research.


Asunto(s)
Brassica napus/genética , Transcriptoma/genética , Empalme Alternativo/genética , Brassica napus/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Sistemas de Lectura Abierta/genética , Poliploidía , Alineación de Secuencia , Análisis de Secuencia de ARN , Secuenciación Completa del Genoma
20.
Plant Sci ; 293: 110411, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32081260

RESUMEN

In Brassica napus, pod number and pod density are critical factors to determine seed yield. Although the pod density is an essential yield trait, the regulation of yield formation in oil crops, as well as the genetic and molecular mechanisms, are poorly understood. In this study, we characterized a rapeseed high-density pod mutant (dpt247) from composite hybridization. To shed some light on the nature of this mutation, it was investigated morphologically, anatomically, physiologically, genetically and transcriptomically. The mutant plant showed noticeable phenotypic differences in comparison with the control plant, including reduced plant height and primary branch length, decreased number of primary branches, significantly increased number of pod on the main inflorescence, and more compact pod distribution. Besides, the mutant had higher levels of indole-3-acetic acid (IAA) and zeatin riboside (ZR) in the shoot apical meristem (SAM). The dense pod trait was controlled by two major recessive genes identified in the segregating genetic populations of GRE501 and dpt247. RNA sequencing indicated genes participated in auxin, cytokinin and WUS/CLV signalling pathway in dpt247 were more active in the mutant. These results provide important information for understanding the regulation of yield formation and high yield breeding in rapeseed.


Asunto(s)
Brassica napus/genética , Genes Recesivos/genética , Semillas/genética , División Celular , Cromosomas de las Plantas , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Ácidos Indolacéticos/metabolismo , Isopenteniladenosina/análogos & derivados , Fenotipo , Brotes de la Planta , Semillas/fisiología , Análisis de Secuencia de ARN , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...