Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 16(11): 2348-2372, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34609851

RESUMEN

The search for new antimalarial drugs with unexplored mechanisms of action is currently one of the main objectives to combat the resistance already in the clinic. New drugs should target specific mechanisms that once initiated lead inevitably to the parasite's death and clearance and cause minimal toxicity to the host. One such new mode of action recently characterized is to target the parasite's calcium dynamics. Disruption of the calcium homeostasis is associated with compromised digestive vacuole membrane integrity and release of its contents, leading to programmed cell death-like features characterized by loss of mitochondrial membrane potential and DNA degradation. Intriguingly, chloroquine (CQ)-treated parasites were previously reported to exhibit such cellular features. Using a high-throughput phenotypic screen, we identified 158 physiological disruptors (hits) of parasite calcium distribution from a small subset of approximately 3000 compounds selected from the GSK TCAMS (Tres Cantos Anti-Malarial Set) compound library. These compounds were then extensively profiled for biological activity against various CQ- and artemisinin-resistant Plasmodium falciparum strains and stages. The hits were also examined for cytotoxicity, speed of antimalarial activity, and their possible inhibitory effects on heme crystallization. Overall, we identified three compounds, TCMDC-136230, -125431, and -125457, which were potent in inducing calcium redistribution but minimally inhibited heme crystallization. Molecular superimposition of the molecules by computational methods identified a common pharmacophore, with the best fit assigned to TCMDC-125457. There were low cytotoxicity or CQ cross-resistance issues for these three compounds. IC50 values of these three compounds were in the low micromolar range. In addition, TCMDC-125457 demonstrated high efficacy when pulsed in a single-dose combination with artesunate against tightly synchronized artemisinin-resistant ring-stage parasites. These results should add new drug options to the current armament of antimalarial drugs as well as provide promising starting points for development of drugs with non-classical modes of action.


Asunto(s)
Antimaláricos/farmacología , Calcio/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Homeostasis/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/química , Benzofuranos/química , Citosol/metabolismo , ADN/metabolismo , Imidazoles/química , Mitocondrias/metabolismo , Plasmodium falciparum/metabolismo , Relación Estructura-Actividad
2.
ACS Med Chem Lett ; 11(1): 49-55, 2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31938463

RESUMEN

Here we report the nanomolar potencies of N 1,N 3-dialkyldioxonaphthoimidazoliums against asexual forms of sensitive and resistant Plasmodium falciparum. Activity was dependent on the presence of the fused quinone-imidazolium entity and lipophilicity imparted by the N1/N3 alkyl residues on the scaffold. Gametocytocidal activity was also detected, with most members active at IC50 < 1 µM. A representative analog with good solubility, limited PAMPA permeability, and microsomal stability demonstrated oral efficacy on a humanized mouse model of P. falciparum.

3.
Eur J Med Chem ; 184: 111755, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31627059

RESUMEN

Herein, we report the discovery of a dual histone deacetylase inhibitor displaying a unique HDAC3/6 selectivity profile. An initial strategy to merge two epigenetic pharmacophores resulted in the discovery of potent HDAC6 inhibitors with selectivity over HDAC1. Screening in an HDAC panel revealed additional low nanomolar inhibition only against HDAC3. Low micromolar antiproliferative activities against two breast cancer and four hematological cancer cell lines was supported by pharmacodynamic studies on a preferred molecule, 24c, substantiating the HDAC inhibitory profile in cells. Apoptosis was identified as one of the main cell death pathways. Modelling studies of 24c against HDAC1,2,3 and 6 further provided insights on the orientation of specific residues relevant to compound potency, explaining the observed HDAC3/6 selectivity. A subset of the compounds also exhibited good antimalarial activities, particularly against the chloroquine-resistant strain K1 of P.falciparum. In vitro studies revealed a favourable DMPK profile warranting further investigation of the therapeutic potential of these compounds.


Asunto(s)
Antimaláricos/farmacología , Descubrimiento de Drogas , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/síntesis química , Antimaláricos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Ratones , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Ratas , Relación Estructura-Actividad
5.
Artículo en Inglés | MEDLINE | ID: mdl-30718250

RESUMEN

The emergence of artemisinin-resistant Plasmodium falciparum poses a major threat to current frontline artemisinin combination therapies. Artemisinin resistance is widely associated with mutations in the P. falciparum Kelch13 (PfKelch13) propeller region, leading to delayed parasite clearance and increased survival of early-ring-stage parasites. There is therefore a need to discover novel drugs that are effective against artemisinin-resistant P. falciparum In view of this, our study aimed to identify compounds from the Library of Pharmacologically Active Compounds1280 (LOPAC1280) that could increase the efficacy of artesunate and be used as a potential partner drug for treatment against artemisinin-resistant falciparum malaria. By using a modified ring-stage survival assay, we performed a high-throughput screening of the activities of the 1,280 compounds from the LOPAC library in combination with artesunate against the P. falciparum IPC 5202 field isolate harboring the R539T mutation in the PfKelch13 propeller region. The potencies of the hits against both the IPC 5202 and CamWT_C580Y field isolates were determined through dose-dependent isobologram analyses; CamWT_C580Y has the more prevalent C580Y mutation characteristic of strains with artemisinin resistance. We identified tyrphostin A9 to have synergistic and additive activity against both parasite strains when dosed in combination with artesunate. These findings provide promising novel artesunate combinations that can target the P. falciparum artemisinin-resistant ring stage and insights that may aid in obtaining a better understanding of the mechanism involved in artemisinin resistance.


Asunto(s)
Artesunato/farmacología , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Tirfostinos/farmacología , Antimaláricos/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Genotipo , Humanos , Malaria Falciparum/parasitología , Mutación/genética , Plasmodium falciparum/genética , Proteínas Protozoarias
6.
mSphere ; 3(1)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29359192

RESUMEN

The Malaria Box collection includes 400 chemically diverse small molecules with documented potency against malaria parasite growth, but the underlying modes of action are largely unknown. Using complementary phenotypic screens against Plasmodium falciparum and Toxoplasma gondii, we report phenotype-specific hits based on inhibition of overall parasite growth, apicoplast segregation, and egress or host invasion, providing hitherto unavailable insights into the possible mechanisms affected. First, the Malaria Box library was screened against tachyzoite stage T. gondii and the half-maximal effective concentrations (EC50s) of molecules showing ≥80% growth inhibition at 10 µM were determined. Comparison of the EC50s for T. gondii and P. falciparum identified a subset of 24 molecules with nanomolar potency against both parasites. Thirty molecules that failed to induce acute growth inhibition in T. gondii tachyzoites in a 2-day assay caused delayed parasite death upon extended exposure, with at least three molecules interfering with apicoplast segregation during daughter cell formation. Using flow cytometry and microscopy-based examinations, we prioritized 26 molecules with the potential to inhibit host cell egress/invasion during asexual developmental stages of P. falciparum. None of the inhibitors affected digestive vacuole integrity, ruling out a mechanism mediated by broadly specific protease inhibitor activity. Interestingly, five of the plasmodial egress inhibitors inhibited ionophore-induced egress of T. gondii tachyzoites. These findings highlight the advantage of comparative and targeted phenotypic screens in related species as a means to identify lead molecules with a conserved mode of action. Further work on target identification and mechanism analysis will facilitate the development of antiparasitic compounds with cross-species efficacy. IMPORTANCE The phylum Apicomplexa includes many human and animal pathogens, such as Plasmodium falciparum (human malaria) and Toxoplasma gondii (human and animal toxoplasmosis). Widespread resistance to current antimalarials and the lack of a commercial vaccine necessitate novel pharmacological interventions with distinct modes of action against malaria. For toxoplasmosis, new drugs to effectively eliminate tissue-dwelling latent cysts of the parasite are needed. The Malaria Box antimalarial collection, managed and distributed by the Medicines for Malaria Venture, includes molecules of novel chemical classes with proven antimalarial efficacy. Using targeted phenotypic assays of P. falciparum and T. gondii, we have identified a subset of the Malaria Box molecules as potent inhibitors of plastid segregation and parasite invasion and egress, thereby providing early insights into their probable mode of action. Five molecules that inhibit the egress of both parasites have been identified for further mechanistic studies. Thus, the approach we have used to identify novel molecules with defined modes of action in multiple parasites can expedite the development of pan-active antiparasitic agents.

7.
Artículo en Inglés | MEDLINE | ID: mdl-29311064

RESUMEN

Plasmodium falciparum infections leading to malaria have severe clinical manifestations and high mortality rates. Chloroquine (CQ), a former mainstay of malaria chemotherapy, has been rendered ineffective due to the emergence of widespread resistance. Recent studies, however, have unveiled a novel mode of action in which low-micromolar levels of CQ permeabilized the parasite's digestive vacuole (DV) membrane, leading to calcium efflux, mitochondrial depolarization, and DNA degradation. These phenotypes implicate the DV as an alternative target of CQ and suggest that DV disruption is an attractive target for exploitation by DV-disruptive antimalarials. In the current study, high-content screening of the Medicines for Malaria Venture (MMV) Pathogen Box (2015) was performed to select compounds which disrupt the DV membrane, as measured by the leakage of intravacuolar Ca2+ using the calcium probe Fluo-4 AM. The hits were further characterized by hemozoin biocrystallization inhibition assays and dose-response half-maximal (50%) inhibitory concentration (IC50) assays across resistant and sensitive strains. Three hits, MMV676380, MMV085071, and MMV687812, were shown to demonstrate a lack of CQ cross-resistance in parasite strains and field isolates. Through systematic analyses, MMV085071 emerged as the top hit due to its rapid parasiticidal effect, low-nanomolar IC50, and good efficacy in triggering DV disruption, mitochondrial degradation, and DNA fragmentation in P. falciparum These programmed cell death (PCD)-like phenotypes following permeabilization of the DV suggests that these compounds kill the parasite by a PCD-like mechanism. From the drug development perspective, MMV085071, which was identified to be a potent DV disruptor, offers a promising starting point for subsequent hit-to-lead generation and optimization through structure-activity relationships.


Asunto(s)
Antimaláricos/farmacología , Calcio/metabolismo , Ensayos Analíticos de Alto Rendimiento , Plasmodium falciparum/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Vacuolas/efectos de los fármacos , Compuestos de Anilina/química , Antimaláricos/química , Cloroquina/química , Cloroquina/farmacología , Cristalización , Bases de Datos Farmacéuticas , Resistencia a Medicamentos , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Eritrocitos/parasitología , Colorantes Fluorescentes/química , Hemoproteínas/química , Hemoproteínas/efectos de los fármacos , Humanos , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/parasitología , Permeabilidad , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Vacuolas/metabolismo , Vacuolas/parasitología , Xantenos/química
8.
Mol Neurobiol ; 55(2): 1537-1550, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28181190

RESUMEN

Docosahexaenoic acid (DHA) is enriched in membrane phospholipids of the central nervous system (CNS) and has a role in aging and neuropsychiatric disorders. DHA is metabolized by the enzyme Alox15 to 17S-hydroxy-DHA, which is then converted to 7S-hydroperoxy,17S-hydroxy-DHA by a 5-lipoxygenase, and thence via epoxy intermediates to the anti-inflammatory molecule, resolvin D1 (RvD1 or 7S,8R,17S-trihydroxy-docosa-Z,9E,11E,13Z,15E,19Z-hexaenoic acid). In this study, we investigated the distribution and function of Alox15 in the CNS. RT-PCR of the CNS showed that the prefrontal cortex exhibits the highest Alox15 mRNA expression level, followed by the parietal association cortex and secondary auditory cortex, olfactory bulb, motor and somatosensory cortices, and the hippocampus. Western blot analysis was consistent with RT-PCR data, in that the prefrontal cortex, cerebral cortex, hippocampus, and olfactory bulb had high Alox15 protein expression. Immunohistochemistry showed moderate staining in the olfactory bulb, cerebral cortex, septum, striatum, cerebellar cortex, cochlear nuclei, spinal trigeminal nucleus, and dorsal horn of the spinal cord. Immuno-electron microscopy showed localization of Alox15 in dendrites, in the prefrontal cortex. Liquid chromatography mass spectrometry analysis showed significant decrease in resolvin D1 levels in the prefrontal cortex after inhibition or antisense knockdown of Alox15. Alox15 inhibition or antisense knockdown in the prefrontal cortex also blocked long-term potentiation of the hippocampo-prefrontal cortex pathway and increased errors in alternation, in the T-maze test. They indicate that Alox15 processing of DHA contributes to production of resolvin D1 and LTP at hippocampo-prefrontal cortical synapses and associated spatial working memory performance. Together, results provide evidence for a key role of anti-inflammatory molecules generated by Alox15 and DHA, such as resolvin D1, in memory. They suggest that neuroinflammatory brain disorders and chronic neurodegeneration may 'drain' anti-inflammatory molecules that are necessary for normal neuronal signaling, and compromise cognition.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/metabolismo , Memoria Espacial/fisiología , Animales , Encéfalo/metabolismo , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...