Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 271
1.
Adv Mater ; : e2400332, 2024 May 13.
Article En | MEDLINE | ID: mdl-38739927

The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in-memory and in-sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data-intensive sensing and computing applications. The integration of two-dimensional (2D) materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling-bond-free surface, ultra-fast polarization flipping and ultra-low power consumption of the 2D ferroelectrics. Here, we review the recent progress of 2D ferroelectric devices for in-sensing and in-memory neuromorphic computing. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics-integrated 2D devices and active ferroelectrics-integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor-memory and computing integration application field, leading to new possibilities for modern electronics. This article is protected by copyright. All rights reserved.

2.
Sci Total Environ ; 928: 172224, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38599415

Groundwater contamination resulting from petroleum development poses a significant threat to drinking water sources, especially in developing countries. In situ natural remediation methods, including microbiological processes, have gained popularity for the reduction of groundwater contaminants. However, assessing the stage of remediation in deep contaminated groundwater is challenging and costly due to the complexity of diverse geological conditions and unknown initial concentrations of contaminants. This research proposes that redox zonation may be a more convenient and comprehensive indicator than the concentration of contaminants for determining the stage of natural remediation in deep groundwater. The combination of sequencing microbial composition using the high-throughput 16S rRNA gene and function predicted by FAPROTAX is a useful approach to determining the redox conditions of different contaminated groundwater. The sulfate-reducing environment, represented by Desulfobacteraceae, Peptococcaceae, Desulfovibrionaceae, and Desulfohalobiaceae could be used as characteristic early stages of remediation for produced water contamination in wells with high concentrations of SO42-, benzene, and salinity. The nitrate-reducing environment, enriched with microorganisms related to denitrification, sulfur-oxidizing, and methanophilic microorganisms could be indicative of the mid stages of in situ bioremediation. The oxygen reduction environment, enriched with oligotrophic and pathogenic Sphingomonadaceae, Caulobacteraceae, Syntrophaceae, Legionellales, Moraxellaceae, and Coxiellaceae, could be indicative of the late stages of remediation. This comprehensive approach could provide valuable insights into the process of natural remediation and facilitate improved environmental management in areas of deep contaminated groundwater.


Biodegradation, Environmental , Groundwater , Oxidation-Reduction , Water Pollutants, Chemical , Groundwater/chemistry , Groundwater/microbiology , Water Pollutants, Chemical/analysis , RNA, Ribosomal, 16S , Environmental Monitoring/methods , Environmental Restoration and Remediation/methods , Water Microbiology
4.
Nano Lett ; 24(18): 5578-5584, 2024 May 08.
Article En | MEDLINE | ID: mdl-38682925

The lattice parameter of platinum-based intermetallic compounds (IMCs), which correlates with the intrinsic activity of the oxygen reduction reaction (ORR), can be modulated by crystal phase engineering. However, the controlled preparation of IMCs with unconventional crystal structures remains highly challenging. Here, we demonstrate the synthesis of carbon-supported PtCu-based IMC catalysts with an unconventional L10 structure by a composition-regulated strategy. Experiment and machine learning reveal that the thermodynamically favorable structure changes from L11 to L10 when slight Cu atoms are substituted with Co. Benefiting from crystal-phase-induced strain enhancement, the prepared L10-type PtCu0.8Co0.2 catalyst exhibits much-enhanced mass and specific activities of 1.82 A mgPt-1 and 3.27 mA cmPt-2, which are 1.91 and 1.73 times higher than those of the L11-type PtCu catalyst, respectively. Our work highlights the important role of crystal phase in determining the surface strain of IMCs, and opens a promising avenue for the rational preparation of IMCs with different crystal phases by doping.

5.
ACS Nano ; 18(12): 9128-9136, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38492230

The growth of all-inorganic perovskite single-crystal microstructures on substrates is a promising approach for constructing photonic and electronic microdevices. However, current preparation methods typically involve direct control of ions or atoms, which often depends on specific lattice-matched substrates for epitaxial growth and other stringent conditions that limit the mild preparation and flexibility of device integration. Herein, we present the on-substrate fabrication of CsPbBr3 single-crystal microstructures obtained via a nanoparticle self-assembly assisted low-temperature sintering (NSALS) method. Sintering guided by self-assembled atomically oriented superlattice embryos facilitated the formation of single-crystal microstructures under mild conditions without substrate dependence. The as-prepared on-substrate microstructures exhibited a consistent out-of-plane orientation with a carrier lifetime of up to 82.7 ns. Photodetectors fabricated by using these microstructures exhibited an excellent photoresponse of 9.15 A/W, and the dynamic optical response had a relative standard deviation as low as 0.1831%. The discrete photosensor microarray chip with 174000 pixels in a 100 mm2 area showed a response difference of less than 6%. This method of nanoscale particle-controlled single crystal growth on a substrate offers a perspective for mild-condition preparation and in situ repair of crystals of various types. This advancement can propel the flexible integration and widespread application of perovskite devices.

6.
Environ Toxicol Chem ; 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38551298

Most current research focusing on the health risk assessments of particulate polycyclic aromatic hydrocarbons (PAHs) have not analyzed the size distributions and human respiratory deposition rates. In the present study, size-separated particulate matter (PM) was collected in the coastal area of Ningbo using an Anderson eight-stage air sampler over a 1-year period (2014-2015). The 16 US Environmental Protection Agency priority PAHs associated with PM were pretreated with rapid solvent extraction and analyzed by gas chromatography-mass spectrometry. The respiratory exposure assessment was determined using the multiple-path particle dosimetry (MPPD) model. The results show that all PAHs exhibited bimodal distribution with one mode peak in accumulation mode (0.43-0.65 µm) and another mode peak in coarse mode (4.7-5.8 µm). In addition, a low coefficient of divergence of PAHs between PM2.1 and PM2.1-10 indicated a high spatial heterogeneity in source factor contribution and formation mechanism. The deposition fluxes (tracheobronchial + pulmonary) of PM were highest for children in the size range of 3.3 µm < particle diameter (Dp) < 9 µm, while for males and females the highest fluxes occurred in the size range of 1.1 µm < Dp < 2.1 µm. The depositions of coarse PM in children were significantly higher than those in adults. The benzo[a]pyrene equivalent (BaPeq) depositions of dibenz[a,h]anthracene ranged from 1.4e-04 to 0.015 ng h-1, which were highest among the PAHs. The PAHs on particles with Dp >4.7 µm contributed approximately three times more to children than to males and females. Therefore, the toxicity of coarse PM to children needed attention. The incremental lifetime cancer risks (ILCR) for children, males, and females were estimated to be 2.92 × 10-7, 1.82 × 10-7, and 2.38 × 10-7, respectively, which were below the cancer risk guideline value (10-6). These ILCR values were much lower than the risks calculated without considering particle size distributions and respiratory depositions. The combination of the size-segregated sampling technique and the MPPD model can effectively avoid the overestimation of human respiratory exposure. Environ Toxicol Chem 2024;00:1-14. © 2024 SETAC.

7.
Med Image Anal ; 94: 103123, 2024 May.
Article En | MEDLINE | ID: mdl-38430651

Cell line authentication plays a crucial role in the biomedical field, ensuring researchers work with accurately identified cells. Supervised deep learning has made remarkable strides in cell line identification by studying cell morphological features through cell imaging. However, biological batch (bio-batch) effects, a significant issue stemming from the different times at which data is generated, lead to substantial shifts in the underlying data distribution, thus complicating reliable differentiation between cell lines from distinct batch cultures. To address this challenge, we introduce CLANet, a pioneering framework for cross-batch cell line identification using brightfield images, specifically designed to tackle three distinct bio-batch effects. We propose a cell cluster-level selection method to efficiently capture cell density variations, and a self-supervised learning strategy to manage image quality variations, thus producing reliable patch representations. Additionally, we adopt multiple instance learning(MIL) for effective aggregation of instance-level features for cell line identification. Our innovative time-series segment sampling module further enhances MIL's feature-learning capabilities, mitigating biases from varying incubation times across batches. We validate CLANet using data from 32 cell lines across 93 experimental bio-batches from the AstraZeneca Global Cell Bank. Our results show that CLANet outperforms related approaches (e.g. domain adaptation, MIL), demonstrating its effectiveness in addressing bio-batch effects in cell line identification.


Cell Line Authentication , Humans , Pancreas , Time Factors
8.
Chem Commun (Camb) ; 60(31): 4226-4229, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38526318

We introduce a straightforward, yet effective strategy to combat the performance decline of proton-exchange membrane fuel cells in low-humidity environments. Our method centers on air-oxidizing carbon supports, significantly improving proton and oxygen transport within the cathode catalyst layer.

9.
J Mater Chem B ; 12(9): 2282-2293, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38323909

Skin has a protein microenvironment dominated by functional collagen fibers, while oxidative stress caused by injury can greatly slow down the progress of wound healing. Here, methacrylated dopamine was incorporated into methacrylated silk fibroin molecule chains to develop an injectable hydrogel with photocuring properties for constructing an antioxidant skin protein microenvironment. This silk fibroin-based hydrogel (SF-g-SDA) showed good tensile and adhesion properties for adapting to the wound shape and skin movement, exhibited stable mechanical properties, good biodegradability and cytocompatibility, and promoted cell adhesion and vascularization in vitro. In addition, its phenolic hydroxyl-mediated antioxidant properties effectively protected cells from damage caused by oxidative stress and supported normal cellular life activities. In animal experiments, SF-g-SDA achieved better skin repair effects in comparison to commercial Tegaderm™ in vivo, showing its ability to accelerate wound healing, improve collagen deposition and alignment in newly fabricated tissues, and promote neovascularization and hair follicle formation. These experimental results indicated that the SF-g-SDA hydrogel is a promising wound dressing.


Fibroins , Animals , Fibroins/pharmacology , Antioxidants/pharmacology , Hydrogels/pharmacology , Wound Healing , Collagen/metabolism
10.
Small ; : e2310689, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38421135

Improving the interconnected structure and bioregulatory function of natural chitosan is beneficial for optimizing its performance in bone regeneration. Here, a facile immunoregulatory constructional design is proposed for developing instructive chitosan by directional freezing and alkaline salting out. The molecular dynamics simulation confirmed the assembly kinetics and structural features of various polyphenols and chitosan molecules. Along with the in vitro anti-inflammatory, antioxidative, promoting bone mesenchymal stem cell (BMSC) adhesion and proliferation performance, proanthocyanidin optimizing chitosan (ChiO) scaffold presented an optimal immunoregulatory structure with the directional microchannel. Transcriptome analysis in vitro further revealed the cytoskeleton- and immune-regulation effect of ChiO are the key mechanism of action on BMSC. The rabbit cranial defect model (Φ = 10 mm) after 12 weeks of implantation confirmed the significantly enhanced bone reconstitution. This facile immunoregulatory directional microchannel design provides effective guidance for developing inducible chitosan scaffolds.

11.
Adv Mater ; 36(19): e2310876, 2024 May.
Article En | MEDLINE | ID: mdl-38321645

Structural and physiological cues provide guidance for the directional migration and spatial organization of endogenous cells. Here, a microchannel scaffold with instructive niches is developed using a circumferential freeze-casting technique with an alkaline salting-out strategy. Thereinto, polydopamine-coated nano-hydroxyapatite is employed as a functional inorganic linker to participate in the entanglement and crystallization of chitosan molecules. This scaffold orchestrates the advantage of an oriented porous structure for rapid cell infiltration and satisfactory immunomodulatory capacity to promote stem cell recruitment, retention, and subsequent osteogenic differentiation. Transcriptomic analysis as well as its in vitro and in vivo verification demonstrates that essential colony-stimulating factor-1 (CSF-1) factor is induced by this scaffold, and effectively bound to the target colony-stimulating factor-1 receptor (CSF-1R) on the macrophage surface to activate the M2 phenotype, achieving substantial endogenous bone regeneration. This strategy provides a simple and efficient approach for engineering inducible bone regenerative biomaterials.


Bone Regeneration , Durapatite , Macrophage Colony-Stimulating Factor , Osteogenesis , Polymers , Receptor, Macrophage Colony-Stimulating Factor , Tissue Scaffolds , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Animals , Mice , Durapatite/chemistry , Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/pharmacology , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Receptor, Macrophage Colony-Stimulating Factor/chemistry , Polymers/chemistry , Cell Differentiation , Chitosan/chemistry , Indoles/chemistry , Signal Transduction , Tissue Engineering/methods , Macrophages/metabolism , Macrophages/cytology , RAW 264.7 Cells
12.
Adv Healthc Mater ; 13(12): e2303600, 2024 May.
Article En | MEDLINE | ID: mdl-38303119

Bone regenerative scaffolds with a bionic natural bone hierarchical porous structure provide a suitable microenvironment for cell migration and proliferation. Here, a bionic scaffold (DP-PLGA/HAp) with directional microchannels is prepared by combining 3D printing and directional freezing technology. The 3D printed framework provides structural support for new bone tissue growth, while the directional pore embedded in the scaffolds provides an express lane for cell migration and nutrition transport, facilitating cell growth and differentiation. The hierarchical porous scaffolds achieve rapid infiltration and adhesion of bone marrow mesenchymal stem cells (BMSCs) and improve the expression of osteogenesis-related genes. The rabbit cranial defect experiment presents significant new bone formation, demonstrating that DP-PLGA/HAp offers an effective means to guide cranial bone regeneration. The combination of 3D printing and directional freezing technology might be a promising strategy for developing bone regenerative biomaterials.


Bone Regeneration , Mesenchymal Stem Cells , Osteogenesis , Printing, Three-Dimensional , Tissue Scaffolds , Bone Regeneration/physiology , Animals , Rabbits , Tissue Scaffolds/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Osteogenesis/physiology , Porosity , Cell Differentiation , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Tissue Engineering/methods , Cell Proliferation , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Durapatite/chemistry
13.
Huan Jing Ke Xue ; 45(1): 584-593, 2024 Jan 08.
Article Zh | MEDLINE | ID: mdl-38216507

Antibiotics easily remain in sediments after migrating from the surface to the subsurface due to water-rock interactions, posing a risk of secondary release to groundwater. To investigate the vertical distribution characteristics and environmental impact factors of antibiotics, five 30 m quaternary sediment columns were drilled and stratified near the hospital, and five major classes of antibiotics and sulfonamide metabolites were tested and analyzed. The results showed that:① the antibiotic content in the sediments ranged from 3.05 to 107.03 µg·kg-1, and all of the target antibiotics were detected except lomefloxacin, of which ofloxacin and oxytetracycline were the most important antibiotics in the study area. ② The antibiotics did not show a strict downward trend in the vertical direction but varied with the lithological stratification. ③ Antibiotics were primarily deposited in the clay layer and varied with the fluctuation of the groundwater level. ④ The results of redundancy analysis between antibiotics and environmental factors suggested that pH and TOC controlled the fate and transformation of antibiotics through influencing the adsorption of antibiotics by sediments. The risk of antibiotic contamination from hospital wastewater seepage into the subsurface environment should be taken seriously.


Groundwater , Water Pollutants, Chemical , Anti-Bacterial Agents/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Geologic Sediments/chemistry , China
14.
J Hazard Mater ; 465: 133368, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38163408

Urban groundwater, serving as a critical reservoir for potable water, faces susceptibility to contamination from discrete sources such as hospital wastewater. This study investigates the distribution and plausible origins of antibiotics and antibiotic resistance genes (ARGs) in urban groundwater, drawing comparisons between areas proximal to hospitals and non-hospital areas. Ofloxacin and oxytetracycline emerged as the prevalent antibiotics across all samples, with a discernibly richer array of antibiotic types observed in groundwater sourced from hospital-adjacent regions. Employing a suite of multi-indicator tracers encompassing indicator drugs, Enterococci, ammonia, and Cl/Br mass ratio, discernible pollution from hospital or domestic sewage leakage was identified in specific wells, correlating with an escalating trajectory in antibiotic contamination. Redundancy analysis underscored temperature and dissolved organic carbon as principal environmental factors influencing antibiotics distribution in groundwater. Network analysis elucidated the facilitating role of mobile genetic elements, such as int1 and tnpA-02 in propagating ARGs. Furthermore, ARGs abundance exhibited positive correlations with temperature, pH and metallic constituents (e.g., Cu, Pb, Mn and Fe) (p < 0.05). Notably, no conspicuous correlation manifested between antibiotics and ARGs. These findings accentuate the imperative of recognizing the peril posed by antibiotic contamination in groundwater proximal to hospitals and advocate for the formulation of robust prevention and control strategies to mitigate the dissemination of antibiotics and ARGs.


Anti-Bacterial Agents , Groundwater , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Drug Resistance, Microbial/genetics , Hospitals, Urban
15.
J Colloid Interface Sci ; 657: 529-537, 2024 Mar.
Article En | MEDLINE | ID: mdl-38070338

Two-dimensional (2D) transition metal dichalcogenides are highly suitable for constructing junction photodetectors because of their suspended bond-free surface and adjustable bandgap. Additional stable layers are often used to ensure the stability of photodetectors. Unfortunately, they often increase the complexity of preparation and cause performance degradation of devices. Considering the self-passivation behavior of TaSe2, we designed and fabricated a novel self-powered TaSe2/WS2/TaSe2 asymmetric heterojunction photodetector. The heterojunction photodetector shows excellent photoelectric performance and photovoltaic characteristics, achieving a high responsivity of 292 mA/W, an excellent specific detectivity of 2.43 × 1011 Jones, a considerable external quantum efficiency of 57 %, a large optical switching ratio of 2.6 × 105, a fast rise/decay time of 43/54 µs, a high open-circuit voltage of 0.23 V, and a short-circuit current of 2.28 nA under 633 nm laser irradiation at zero bias. Moreover, the device also shows a favorable optical response to 488 and 532 nm lasers. Notably, it exhibits excellent environmental long-term stability with the performance only decreasing âˆ¼ 5.6 % after exposed to air for 3 months. This study provides a strategy for the development of air-stable self-powered photodetectors based on 2D materials.

16.
Small ; 20(2): e2304173, 2024 Jan.
Article En | MEDLINE | ID: mdl-37705128

Advanced computing technologies such as distributed computing and the Internet of Things require highly integrated and multifunctional electronic devices. Beyond the Si technology, 2D-materials-based dual-gate transistors are expected to meet these demands due to the ultra-thin body and the dangling-bond-free surface. In this work, a molybdenum disulfide (MoS2 ) asymmetric-dual-gate field-effect transistor (ADGFET) with an In2 Se3 top gate and a global bottom gate is designed. The independently controlled double gates enable the device to achieve an on/off ratio of 106 with a low subthreshold swing of 94.3 mV dec-1 while presenting a logic function. The coupling effect between the double gates allows the top gate to work as a charge-trapping layer, realizing nonvolatile memory (105 on/off ratio with retention time over 104 s) and six-level memory states. Additionally, ADGFET displays a tunable photodetection with the responsivity reaching the highest value of 857 A W-1 , benefiting from the interface coupling between the double gates. Meanwhile, the photo-memory property of ADGFET is also verified by using the varying exposure dosages-dependent illumination. The multifunctional applications demonstrate that the ADGFET provides an alternative way to integrate logic, memory, and sensing into one device architecture.

17.
Cell Biol Int ; 48(2): 174-189, 2024 Feb.
Article En | MEDLINE | ID: mdl-37853939

Geranylgeranyltransferase type I (GGTase-I) significantly affects Rho proteins, such that the malignant progression of several cancers may be induced. Nevertheless, the effect and underlying mechanism of GGTase-I in the malignant progression of salivary adenoid cystic carcinoma (SACC) remain unclear. This study primarily aimed to investigate the role and mechanism of GGTase-I in mediating the malignant progression of SACC. The level of GGTase-I gene in cells was stably knocked down by short hairpin RNA-EGFP-lentivirus. The effects of GGTase-I silencing on the migration, invasion, and spread of cells were examined, the messenger RNA levels of GGTase-I and RhoA genes of SACC cells after GGTase-I knockdown were determined, and the protein levels of RhoA and RhoA membrane of SACC cells were analyzed. Moreover, the potential underlying mechanism of silencing GGTase-I on the above-mentioned aspects in SACC cells was assessed by examining the protein expression of ROCK1, MLC, p-MLC, E-cadherin, Vimentin, MMP2, and MMP9. Furthermore, the underlying mechanism of SACC cells proliferation was investigated through the analysis of the expression of cyclinD1, MYC, E2F1, and p21CIP1/WAF1 . Besides, the change of RhoA level in SACC tissues compared with normal paracancer tissues was demonstrated through quantitative reverse-transcription polymerase chain reaction and western blot experiments. Next, the effect after GGTase-I silencing was assessed through the subcutaneous tumorigenicity assay. As indicated by the result of this study, the silencing of GGTase-I significantly reduced the malignant progression of tumors in vivo while decreasing the migration, invasion, and proliferation of SACC cells and RhoA membrane, Vimentin, ROCK1, p-MLC, MMP2, MMP9, MYC, E2F1, and CyclinD1 expression. However, the protein expression of E-cadherin and p21CIP1/WAF1 was notably upregulated. Subsequently, no significant transform of RhoA and MLC proteins was identified. Furthermore, RhoA expression in SACC tissues was significantly higher than that in paracancerous tissues. As revealed by the results of this study, GGTase-I shows a correlation with the proliferation of SACC through the regulation of cell cycle and may take on vital significance in the migration and invasion of SACC by regulating RhoA/ROCK1/MLC signaling pathway. GGTase-I is expected to serve as a novel exploration site of SACC.


Alkyl and Aryl Transferases , Carcinoma, Adenoid Cystic , Salivary Gland Neoplasms , rho-Associated Kinases , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Vimentin/metabolism , Carcinoma, Adenoid Cystic/genetics , Carcinoma, Adenoid Cystic/metabolism , Carcinoma, Adenoid Cystic/pathology , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/metabolism , Salivary Gland Neoplasms/pathology , Neoplasm Invasiveness/genetics , Cell Cycle Checkpoints , Signal Transduction , Cell Proliferation , Cadherins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
18.
Heliyon ; 9(11): e22297, 2023 Nov.
Article En | MEDLINE | ID: mdl-38053907

Steel bridges are generally considered to perform well during seismic activity. Nevertheless, they still suffered much unexpected seismic damage in the Kumamoto earthquake, especially seismic pounding damage. Previous studies on bridge pounding damage have generally focused on reinforced concrete bridges. However, steel bridges' dynamic characteristics are more complex, the stiffness of each component varies significantly, and relevant research remains limited. Therefore, the numerical simulation method is adopted in this paper to study the pounding damage of simple-supported steel bridges under seismic events in detail. The multiscale, fine three-dimensional finite element model was built using the general finite element calculation platform Abaqus, and dynamic implicit analysis was performed. Numerical results show that large and near-fault seismic activity results in obvious pounding damage to steel beams. Specifically, longitudinal pounding causes damage to the steel beam's ends; however, the damage is typically localized and mild. Lateral pounding further causes direct damage to the steel beams, resulting in extensive and serious damage. Horizontal pounding which combines longitudinal and lateral causes rotation of the bridge deck and aggravates the lateral damage to steel beams. In addition, a pounding identification method based only on displacement data is proposed, and a feasible preventive measure for lateral pounding damage is suggested.

19.
Article En | MEDLINE | ID: mdl-38017658

Two-dimensional (2D) self-driven photodetectors have a wide range of applications in wearable, imaging, and flexible electronics. However, the preparation of most self-powered photodetectors is still complex and time-consuming. Simultaneously, the constant work function of a metal, numerous defects, and a large Schottky barrier at the 2D/metal interface hinder the transmission and collection of optical carriers, which will suppress the optical responsivity of the device. This paper proposed a self-driven graphene/WSe2/graphene (Gr/WSe2/Gr) photodetector with asymmetric Schottky van der Waals (vdWs) contacts. The vdWs contacts are formed by transferring Gr as electrodes using the dry-transfer method, obviating the limitations of defects and Fermi-level pinning at the interface of electrodes made by conventional metal deposition methods to a great extent and resulting in superior dynamic response, which leads to a more efficient and faster collection of photogenerated carriers. This work also demonstrates that the significant surface potential difference of Gr electrodes is a crucial factor to ensure their superior performance. The self-driven Gr/WSe2/Gr photodetector exhibits an ultrahigh Ilight/Idark ratio of 106 with a responsivity value of 20.31 mA/W and an open-circuit voltage of 0.37 V at zero bias. The photodetector also has ultrafast response speeds of 42.9 and 56.0 µs. This paper provides a feasible way to develop self-driven optoelectronic devices with a simple structure and excellent performance.

20.
Clin Exp Med ; 23(8): 4765-4777, 2023 Dec.
Article En | MEDLINE | ID: mdl-37938465

This study aimed to elucidate the immune status of systemic lupus erythematosus (SLE) patients with infections. We enrolled 253 SLE patients including 77 patients with infections. Clinical features and immunological parameters were analyzed, with particular reference to neutrophil CD64 (nCD64) expression, myeloid-derived suppressor cells (MDSCs), activated T cells and multiple cytokines. Among the 77 SLE patients with infections, 32 patients (41.56%) developed fever and 20 patients (25.97%) developed serositis, which were higher compared to the non-infection group. A considerably higher level of nCD64 was found in the infection group (4.65 vs 1.01, P < 0.001). In addition, the infection group exhibited higher percentages of total MDSCs (6.99 vs 4.30%, P = 0.003), polymorphonuclear MDSCs (PMN-MDSCs) (P = 0.032) and monocytic MDSCs (M-MDSCs) (P = 0.015). T cells were more activated during infections, with an elevated level of IL-2R (P < 0.001). Specifically, higher percentages of CD4+CD38+ T cells (55.73 vs 50.17%, P = 0.036), CD8+HLA-DR+ T cells (59.82 vs 47.99%, P < 0.001) and CD8+CD38+ T cells (68.59 vs 63.90%, P = 0.044) were identified in the infection group. Furthermore, the serum levels of IL-6, IL-8 and IL-10 were elevated in the infection group (all P < 0.001). Higher proportions of neutrophils, CD4+ and CD8+ T cells, and MDSCs were activated during infections in SLE patients. Additionally, the serum cytokines altered during infections, with noticeably elevated levels of IL-6, IL-8 and IL-10. Infections may lead to the amplification of immune alterations in SLE.


Interleukin-10 , Lupus Erythematosus, Systemic , Humans , CD8-Positive T-Lymphocytes/metabolism , Interleukin-6 , Interleukin-8 , Cytokines
...