Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 10: 861286, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051585

RESUMEN

The continuous development of deep learning improves target detection technology day by day. The current research focuses on improving the accuracy of target detection technology, resulting in the target detection model being too large. The number of parameters and detection speed of the target detection model are very important for the practical application of target detection technology in embedded systems. This article proposed a real-time target detection method based on a lightweight convolutional neural network to reduce the number of model parameters and improve the detection speed. In this article, the depthwise separable residual module is constructed by combining depthwise separable convolution and non-bottleneck-free residual module, and the depthwise separable residual module and depthwise separable convolution structure are used to replace the VGG backbone network in the SSD network for feature extraction of the target detection model to reduce parameter quantity and improve detection speed. At the same time, the convolution kernels of 1 × 3 and 3 × 1 are used to replace the standard convolution of 3 × 3 by adding the convolution kernels of 1 × 3 and 3 × 1, respectively, to obtain multiple detection feature graphs corresponding to SSD, and the real-time target detection model based on a lightweight convolutional neural network is established by integrating the information of multiple detection feature graphs. This article used the self-built target detection dataset in complex scenes for comparative experiments; the experimental results verify the effectiveness and superiority of the proposed method. The model is tested on video to verify the real-time performance of the model, and the model is deployed on the Android platform to verify the scalability of the model.

2.
Front Bioeng Biotechnol ; 10: 905983, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845413

RESUMEN

Intelligent vehicles were widely used in logistics handling, agriculture, medical service, industrial production, and other industries, but they were often not smooth enough in planning the path, and the number of turns was large, resulting in high energy consumption. Aiming at the unsmooth path planning problem of four-wheel intelligent vehicle path planning algorithm, this article proposed an improved genetic and ant colony hybrid algorithm, and the physical model of intelligent vehicle was established. This article first improved ant colony optimization algorithm about heuristic function with the adaptive change of evaporation factor. Then, it improved the genetic algorithm on fitness function, adaptive adjustment of crossover factor, and mutation factor. Last, this article proposed the improved hybrid algorithm with the addition of a deletion operator, adoption of an elite retention strategy, and addition of suboptimal solutions obtained from the improved ant colony algorithm to improved genetic algorithm to obtain optimized new populations. The simulation environment for this article is windows 10, the processor is Intel Core i5-5257U, the running memory is 4GB, the compilation environment is MATLAB2018b, the number of ant samples is 50, the maximum number of iterations is 100, the initial population size of the genetic algorithm is 200, and the maximum number of iterations is 50. Simulation and physical experiments show that the improved hybrid algorithm is effective. Compared with the traditional hybrid algorithm, the improved hybrid algorithm reduced by 46% in the average number of iterations and 75% in the average number of turns in a simple grid. The improved hybrid algorithm reduced by 47% in the average number of iterations and 21% in the average number of turns in a complex grid. The improved hybrid algorithm works better to reduce the number of turns in simple maps.

3.
Front Bioeng Biotechnol ; 10: 945248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845429

RESUMEN

Problems such as redundancy of detection model parameters make it difficult to apply to factory embedded device applications. This paper focuses on the analysis of different existing deep learning model compression algorithms and proposes a model pruning algorithm based on geometric median filtering for structured pruning and compression of defect segmentation detection networks on the basis of structured pruning. Through experimental comparisons and optimizations, the proposed optimization algorithm can greatly reduce the network parameters and computational effort to achieve effective pruning of the defect detection algorithm for steel plate surfaces.

4.
Front Bioeng Biotechnol ; 10: 832829, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35662837

RESUMEN

The analysis of robot inverse kinematic solutions is the basis of robot control and path planning, and is of great importance for research. Due to the limitations of the analytical and geometric methods, intelligent algorithms are more advantageous because they can obtain approximate solutions directly from the robot's positive kinematic equations, saving a large number of computational steps. Particle Swarm Algorithm (PSO), as one of the intelligent algorithms, is widely used due to its simple principle and excellent performance. In this paper, we propose an improved particle swarm algorithm for robot inverse kinematics solving. Since the setting of weights affects the global and local search ability of the algorithm, this paper proposes an adaptive weight adjustment strategy for improving the search ability. Considering the running time of the algorithm, this paper proposes a condition setting based on the limit joints, and introduces the position coefficient k in the velocity factor. Meanwhile, an exponential product form modeling method (POE) based on spinor theory is chosen. Compared with the traditional DH modeling method, the spinor approach describes the motion of a rigid body as a whole and avoids the singularities that arise when described by a local coordinate system. In order to illustrate the advantages of the algorithm in terms of accuracy, time, convergence and adaptability, three experiments were conducted with a general six-degree-of-freedom industrial robotic arm, a PUMA560 robotic arm and a seven-degree-of-freedom robotic arm as the research objects. In all three experiments, the parameters of the robot arm, the range of joint angles, and the initial attitude and position of the end-effector of the robot arm are given, and the attitude and position of the impact point of the end-effector are set to verify whether the joint angles found by the algorithm can reach the specified positions. In Experiments 2 and 3, the algorithm proposed in this paper is compared with the traditional particle swarm algorithm (PSO) and quantum particle swarm algorithm (QPSO) in terms of position and direction solving accuracy, operation time, and algorithm convergence. The results show that compared with the other two algorithms, the algorithm proposed in this paper can ensure higher position accuracy and orientation accuracy of the robotic arm end-effector. the position error of the algorithm proposed in this paper is 0 and the maximum orientation error is 1.29 × 10-8. while the minimum position error of the other two algorithms is -1.64 × 10-5 and the minimum orientation error is -4.03 × 10-6. In terms of operation time, the proposed algorithm in this paper has shorter operation time compared with the other two algorithms. In the last two experiments, the computing time of the proposed algorithm is 0.31851 and 0.30004s respectively, while the shortest computing time of the other two algorithms is 0.33359 and 0.30521s respectively. In terms of algorithm convergence, the proposed algorithm can achieve faster and more stable convergence than the other two algorithms. After changing the experimental subjects, the proposed algorithm still maintains its advantages in terms of accuracy, time and convergence, which indicates that the proposed algorithm is more applicable and has certain potential in solving the multi-arm inverse kinematics solution. This paper provides a new way of thinking for solving the multi-arm inverse kinematics solution problem.

5.
Front Bioeng Biotechnol ; 10: 865820, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480971

RESUMEN

In order to solve the problems of poor image quality, loss of detail information and excessive brightness enhancement during image enhancement in low light environment, we propose a low-light image enhancement algorithm based on improved multi-scale Retinex and Artificial Bee Colony (ABC) algorithm optimization in this paper. First of all, the algorithm makes two copies of the original image, afterwards, the irradiation component of the original image is obtained by used the structure extraction from texture via relative total variation for the first image, and combines it with the multi-scale Retinex algorithm to obtain the reflection component of the original image, which are simultaneously enhanced using histogram equalization, bilateral gamma function correction and bilateral filtering. In the next part, the second image is enhanced by histogram equalization and edge-preserving with Weighted Guided Image Filtering (WGIF). Finally, the weight-optimized image fusion is performed by ABC algorithm. The mean values of Information Entropy (IE), Average Gradient (AG) and Standard Deviation (SD) of the enhanced images are respectively 7.7878, 7.5560 and 67.0154, and the improvement compared to original image is respectively 2.4916, 5.8599 and 52.7553. The results of experiment show that the algorithm proposed in this paper improves the light loss problem in the image enhancement process, enhances the image sharpness, highlights the image details, restores the color of the image, and also reduces image noise with good edge preservation which enables a better visual perception of the image.

6.
Front Bioeng Biotechnol ; 10: 818112, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35387296

RESUMEN

Recent work has shown that deep convolutional neural network is capable of solving inverse problems in computational imaging, and recovering the stress field of the loaded object from the photoelastic fringe pattern can also be regarded as an inverse problem solving process. However, the formation of the fringe pattern is affected by the geometry of the specimen and experimental configuration. When the loaded object produces complex fringe distribution, the traditional stress analysis methods still face difficulty in unwrapping. In this study, a deep convolutional neural network based on the encoder-decoder structure is proposed, which can accurately decode stress distribution information from complex photoelastic fringe images generated under different experimental configurations. The proposed method is validated on a synthetic dataset, and the quality of stress distribution images generated by the network model is evaluated using mean squared error (MSE), structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), and other evaluation indexes. The results show that the proposed stress recovery network can achieve an average performance of more than 0.99 on the SSIM.

7.
Front Bioeng Biotechnol ; 10: 852408, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392405

RESUMEN

Complete trajectory planning includes path planning, inverse solution solving and trajectory optimization. In this paper, a highly smooth and time-saving approach to trajectory planning is obtained by improving the kinematic and optimization algorithms for the time-optimal trajectory planning problem. By partitioning the joint space, the paper obtains an inverse solution calculation based on the partitioning of the joint space, saving 40% of the inverse kinematics solution time. This means that a large number of computational resources can be saved in trajectory planning. In addition, an improved sparrow search algorithm (SSA) is proposed to complete the solution of the time-optimal trajectory. A Tent chaotic mapping was used to optimize the way of generating initial populations. The algorithm was further improved by combining it with an adaptive step factor. The experiments demonstrated the performance of the improved SSA. The robot's trajectory is further optimized in time by an improved sparrow search algorithm. Experimental results show that the method can improve convergence speed and global search capability and ensure smooth trajectories.

8.
Front Bioeng Biotechnol ; 10: 843020, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295652

RESUMEN

Autonomous Underwater Vehicle are widely used in industries, such as marine resource exploitation and fish farming, but they are often subject to a large amount of interference which cause poor control stability, while performing their tasks. A decoupling control algorithm is proposed and A single control volume-single attitude angle model is constructed for the problem of severe coupling in the control system of attitude of six degrees of freedom Autonomous Underwater Vehicle. Aiming at the problem of complex Active Disturbance Rejection Control (ADRC) adjustment relying on manual experience, the PSO-ADRC algorithm is proposed to realize the automatic adjustment of its parameters, which improves the anti-interference ability and control accuracy of Autonomous Underwater Vehicle in dynamic environment. The anti-interference ability and control accuracy of the method were verified through experiments.

9.
Front Bioeng Biotechnol ; 9: 779353, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746114

RESUMEN

Gesture recognition technology is widely used in the flexible and precise control of manipulators in the assisted medical field. Our MResLSTM algorithm can effectively perform dynamic gesture recognition. The result of surface EMG signal decoding is applied to the controller, which can improve the fluency of artificial hand control. Much current gesture recognition research using sEMG has focused on static gestures. In addition, the accuracy of recognition depends on the extraction and selection of features. However, Static gesture research cannot meet the requirements of natural human-computer interaction and dexterous control of manipulators. Therefore, a multi-stream residual network (MResLSTM) is proposed for dynamic hand movement recognition. This study aims to improve the accuracy and stability of dynamic gesture recognition. Simultaneously, it can also advance the research on the smooth control of the Manipulator. We combine the residual model and the convolutional short-term memory model into a unified framework. The architecture extracts spatiotemporal features from two aspects: global and deep, and combines feature fusion to retain essential information. The strategy of pointwise group convolution and channel shuffle is used to reduce the number of network calculations. A dataset is constructed containing six dynamic gestures for model training. The experimental results show that on the same recognition model, the gesture recognition effect of fusion of sEMG signal and acceleration signal is better than that of only using sEMG signal. The proposed approach obtains competitive performance on our dataset with the recognition accuracies of 93.52%, achieving state-of-the-art performance with 89.65% precision on the Ninapro DB1 dataset. Our bionic calculation method is applied to the controller, which can realize the continuity of human-computer interaction and the flexibility of manipulator control.

10.
Sensors (Basel) ; 21(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34502791

RESUMEN

The similar analysis of time sequence images to achieve image matching is a foundation of tasks in dynamic environments, such as multi-object tracking and dynamic gesture recognition. Therefore, we propose a matching method of time sequence images based on the Siamese network. Inspired by comparative learning, two different comparative parts are designed and embedded in the network. The first part makes a comparison between the input image pairs to generate the correlation matrix. The second part compares the correlation matrix, which is the output of the first comparison part, with a template, in order to calculate the similarity. The improved loss function is used to constrain the image matching and similarity calculation. After experimental verification, we found that it not only performs better, but also has some ability to estimate the camera pose.

11.
Front Bioeng Biotechnol ; 9: 793782, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35083202

RESUMEN

Mobile robots have an important role in material handling in manufacturing and can be used for a variety of automated tasks. The accuracy of the robot's moving trajectory has become a key issue affecting its work efficiency. This paper presents a method for optimizing the trajectory of the mobile robot based on the digital twin of the robot. The digital twin of the mobile robot is created by Unity, and the trajectory of the mobile robot is trained in the virtual environment and applied to the physical space. The simulation training in the virtual environment provides schemes for the actual movement of the robot. Based on the actual movement data returned by the physical robot, the preset trajectory of the virtual robot is dynamically adjusted, which in turn enables the correction of the movement trajectory of the physical robot. The contribution of this work is the use of genetic algorithms for path planning of robots, which enables trajectory optimization of mobile robots by reducing the error in the movement trajectory of physical robots through the interaction of virtual and real data. It provides a method to map learning in the virtual domain to the physical robot.

12.
Front Bioeng Biotechnol ; 9: 810876, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096796

RESUMEN

The intelligent monitoring and diagnosis of steel defects plays an important role in improving steel quality, production efficiency, and associated smart manufacturing. The application of the bio-inspired algorithms to mechanical engineering problems is of great significance. The split attention network is an improvement of the residual network, and it is an improvement of the visual attention mechanism in the bionic algorithm. In this paper, based on the feature pyramid network and split attention network, the network is improved and optimised in terms of data enhancement, multi-scale feature fusion and network structure optimisation. The DF-ResNeSt50 network model is proposed, which introduces a simple modularized split attention block, which can improve the attention mechanism of cross-feature graph groups. Finally, experimental validation proves that the proposed network model has good performance and application prospects in the intelligent detection of steel defects.

13.
Lab Chip ; 20(5): 995-1001, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32025666

RESUMEN

Aberration is a long-standing problem of fixed focal lenses and a complicated lens set is usually required to compensate for aberration. It becomes more challenging for tunable lenses. This paper reports an original design of an in-plane optofluidic lens that enables compensation for spherical aberration during the tuning of focal length. The key idea is to use two arrays of electrode strips to symmetrically control the two air/liquid interfaces by the dielectrophoretic effect. The strips work together to define the global shape of the lens interface and thus the focal length, whereas each strip regulates the local curvature of the interface to focus the paraxial and peripheral arrays on the same point. Experiments using a silicone oil droplet demonstrate the tuning of focal length over 500-1400 µm and obtain a longitudinal spherical aberration (LSA) of ∼3.5 µm, which is only 1/24 of the LSA (85 µm) of the spherical lens. Fine adjustment of the applied voltages of strips allows even elimination of the LSA and enabling of the aberration-free tunable lenses. It is the first time that local curvature regulation is used to compensate for the aberration within one in-plane liquid lens. This simple and effective method will find potential applications in lab-on-a-chip systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...