Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Front Cell Infect Microbiol ; 14: 1264525, 2024.
Article En | MEDLINE | ID: mdl-38585651

Introduction: Dengue is an arboviral disease causing severe illness in over 500,000 people each year. Currently, there is no way to constrain dengue in the clinic. Host kinase regulators of dengue virus (DENV) infection have the potential to be disrupted by existing therapeutics to prevent infection and/or disease progression. Methods: To evaluate kinase regulation of DENV infection, we performed kinase regression (KiR), a machine learning approach that predicts kinase regulators of infection using existing drug-target information and a small drug screen. We infected hepatocytes with DENV in vitro in the presence of a panel of 38 kinase inhibitors then quantified the effect of each inhibitor on infection rate. We employed elastic net regularization on these data to obtain predictions of which of 291 kinases are regulating DENV infection. Results: Thirty-six kinases were predicted to have a functional role. Intriguingly, seven of the predicted kinases - EPH receptor A4 (EPHA4), EPH receptor B3 (EPHB3), EPH receptor B4 (EPHB4), erb-b2 receptor tyrosine kinase 2 (ERBB2), fibroblast growth factor receptor 2 (FGFR2), Insulin like growth factor 1 receptor (IGF1R), and ret proto-oncogene (RET) - belong to the receptor tyrosine kinase (RTK) family, which are already therapeutic targets in the clinic. We demonstrate that predicted RTKs are expressed at higher levels in DENV infected cells. Knockdown of EPHB4, ERBB2, FGFR2, or IGF1R reduces DENV infection in hepatocytes. Finally, we observe differential temporal induction of ERBB2 and IGF1R following DENV infection, highlighting their unique roles in regulating DENV. Discussion: Collectively, our findings underscore the significance of multiple RTKs in DENV infection and advocate further exploration of RTK-oriented interventions against dengue.


Dengue Virus , Dengue , Humans , Dengue Virus/physiology , Receptor, EphA1 , Hepatocytes/metabolism , Tyrosine , Virus Replication
2.
bioRxiv ; 2023 Nov 13.
Article En | MEDLINE | ID: mdl-38014051

Upon transmission to the liver, Plasmodium vivax parasites form replicating schizonts, which continue to initiate blood-stage infection, or dormant hypnozoites that reactivate weeks to months after initial infection. P. vivax phenotypes in the field vary significantly, including the ratio of schizonts to hypnozoites formed and the frequency and timing of relapse. Evidence suggests that both parasite genetics and environmental factors underly this heterogeneity. We previously demonstrated that data on the effect of a panel of kinase inhibitors with overlapping targets on Plasmodium liver stage infection, in combination with a computational approach called kinase regression (KiR), can be used to uncover novel host regulators of infection. Here, we applied KiR to evaluate the extent to which P. vivax liver-stage parasites are susceptible to changes in host kinase activity. We identified a role for a subset of host kinases in regulating schizont and hypnozoite infection and schizont size and characterized overlap as well as variability in host phosphosignaling dependencies between parasite forms and across multiple patient isolates. Striking, our data point to variability in host dependencies across P. vivax isolates, suggesting one possible origin of the heterogeneity observed across P. vivax in the field.

3.
Front Cell Infect Microbiol ; 11: 804186, 2021.
Article En | MEDLINE | ID: mdl-35111697

Upon transmission to the human host, Plasmodium sporozoites exit the skin, are taken up by the blood stream, and then travel to the liver where they infect and significantly modify a single hepatocyte. Low infection rates within the liver have made proteomic studies of infected hepatocytes challenging, particularly in vivo, and existing studies have been largely unable to consider how protein and phosphoprotein differences are altered at different spatial locations within the heterogeneous liver. Using digital spatial profiling, we characterized changes in host signaling during Plasmodium yoelii infection in vivo without disrupting the liver tissue. Moreover, we measured alterations in protein expression around infected hepatocytes and identified a subset of CD163+ Kupffer cells that migrate towards infected cells during infection. These data offer the first insight into the heterogeneous microenvironment that surrounds the infected hepatocyte and provide insights into how the parasite may alter its milieu to influence its survival and modulate immunity.


Malaria , Plasmodium , Animals , Humans , Liver/parasitology , Malaria/parasitology , Proteomics , Sporozoites
...