Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732078

This study aimed to synthesize molybdenum complexes coordinated with an aroyl hydrazone-type ligand (H2L), which was generated through the condensation of 2-hydroxy-5-nitrobenzaldehyde with benzhydrazide. The synthesis yielded two types of mononuclear complexes, specifically [MoO2(L)(MeOH)] and [MoO2(L)(H2O)], as well as a bipyridine-bridged dinuclear complex, [(MoO2(L))2(4,4'-bpy)]. Those entities were thoroughly characterized using a suite of analytical techniques, including attenuated total reflectance infrared spectroscopy (IR-ATR), elemental analysis (EA), thermogravimetric analysis (TGA), and single-crystal X-ray diffraction (SCXRD). Additionally, solid-state impedance spectroscopy (SS-IS) was employed to investigate the electrical properties of these complexes. The mononuclear complexes were tested as catalysts in the epoxidation of cyclooctene and the oxidation of linalool. Among these, the water-coordinated mononuclear complex, [MoO2(L)(H2O)], demonstrated superior electrical and catalytic properties. A novel contribution of this research lies in establishing a correlation between the electrical properties, structural features, and the catalytic efficiency of the complexes, marking this work as one of the pioneering studies in this area for molybdenum coordination complexes, to the best of our knowledge.


Benzaldehydes , Coordination Complexes , Molybdenum , Oxidation-Reduction , Molybdenum/chemistry , Catalysis , Coordination Complexes/chemistry , Benzaldehydes/chemistry , Semiconductors
2.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article En | MEDLINE | ID: mdl-38338782

A series of polynuclear, dinuclear, and mononuclear Mo(VI) complexes were synthesized with the hydrazonato ligands derived from 5-methoxysalicylaldehyde and the corresponding hydrazides (isonicotinic hydrazide (H2L1), nicotinic hydrazide (H2L2), 2-aminobenzhydrazide (H2L3), or 4-aminobenzhydrazide (H2L4)). The metallosupramolecular compounds obtained from non-coordinating solvents, [MoO2(L1,2)]n (1 and 2) and [MoO2(L3,4)]2 (3 and 4), formed infinite structures and metallacycles, respectively. By blocking two coordination sites with cis-dioxo ligands, the molybdenum centers have three coordination sites occupied by the ONO donor atoms from the rigid hydrazone ligands and one by the N atom of pyridyl or amine-functionalized ligand subcomponents from the neighboring Mo building units. The reaction in methanol afforded the mononuclear analogs [MoO2(L1-4)(MeOH)] (1a-4a) with additional monodentate MeOH ligands. All isolated complexes were tested as catalysts for cyclooctene epoxidation using tert-butyl hydroperoxide (TBHP) as an oxidant in water. The impact of the structure and ligand lability on the catalytic efficiency in homogeneous cyclooctene epoxidation was elucidated based on theoretical considerations. Thus, dinuclear assemblies exhibited better catalytic activity than mononuclear or polynuclear complexes.


Hydrazones , Water , Ligands , Catalysis , Cyclooctanes
3.
Phys Chem Chem Phys ; 26(1): 67-75, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-37955204

Despite the growing importance of solid-state reactions, their thermodynamic characterization has largely remained unexplored. This is in part due to the lack of methodology for measuring the heat effects related to reactions between solid reactants. We address here this gap and report on the first direct thermodynamic study of chemical reactions between solid reactants by isothermal calorimetry. Three reaction classes, cationic host-guest complex formation, molecular co-crystallization, and Baeyer-Villiger oxidation were investigated, showcasing the versatility of the devised methodology to provide detailed insight into the enthalpy changes related to various reactions. The reliability of the method was confirmed by correlation with the values obtained via solution calorimetry using Hess's law. The thermodynamic characterization of solid-state reactions described here will enable a deeper understanding of the factors governing solid-state processes.

4.
Chemistry ; 29(52): e202301290, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37347170

The occurrence of crystalline intermediates in mechanochemical reactions might be more widespread than previously assumed. For example, a recent study involving the acetate-assisted C-H activation of N-Heterocycles with [Cp*RhCl2 ]2 by ball milling revealed the formation of transient cocrystals between the reagents prior to the C-H activation step. However, such crystalline intermediates were only observed through stepwise intervallic ex-situ analysis, and their exact role in the C-H activation process remained unclear. In this study, we monitored the formation of discrete, stoichiometric cocrystals between benzo[h]quinoline and [Cp*RhCl2 ]2 by ball milling using in-situ synchrotron X-ray powder diffraction. This continuous analysis revealed an initial cocrystal that transformed into a second crystalline form. Computational studies showed that differences in noncovalent interactions made the [Cp*RhCl2 ]2 unit in the later-appearing cocrystal more reactive towards NaOAc. This demonstrated the advantage of cocrystal formation before the acetate-assisted metalation-deprotonation step, and how the net cooperative action of weak interactions between the reagents in mechanochemical experiments can lead to stable supramolecular assemblies, which can enhance substrate activation under ball-milling conditions. This could explain the superiority of some mechanochemical reactions, such as acetate-assisted C-H activation, compared to their solution-based counterparts.

5.
Cryst Growth Des ; 23(6): 4262-4272, 2023 Jun 07.
Article En | MEDLINE | ID: mdl-37304397

Tetrachlorocuprate(II) hybrids of the three anisidine isomers (ortho-, meta-, and para-, or 2-, 3-, and 4-methoxyaniline, respectively) were prepared and studied in the solid state via X-ray diffraction and magnetization measurements. Depending on the position of the methoxy group of the organic cation, and subsequently, the overall cation geometry, a layered, defective layered, and the structure comprising discrete tetrachlorocuprate(II) units were obtained for the para-, meta-, and ortho-anisidinium hybrids, respectively. In the case of layered and defective layered structures, this affords quasi-2D-layered magnets, demonstrating a complex interplay of strong and weak magnetic interactions that lead to the long-range ferromagnetic (FM) order. In the case of the structure with discrete CuCl42- ions, a peculiar antiferromagnetic (AFM) behavior was revealed. The structural and electronic origins of magnetism are discussed in detail. To supplement it, the method for calculation of dimensionality of the inorganic framework as a function of interaction length was developed. The same was used to discriminate between n-dimensional and "almost" n-dimensional frameworks, to estimate the organic cation geometry limits for layered halometallates, and to provide additional reasoning behind the observed relation between cation geometry and framework dimensionality, as well as their relation to differences in magnetic behavior.

6.
Materials (Basel) ; 16(6)2023 Mar 10.
Article En | MEDLINE | ID: mdl-36984117

Layered hybrid halometallates represent a promising class of multifunctional materials, yet with many open challenges regarding the interaction between building blocks. In this work, we present a synthetic and analytical methodology for the efficient synthesis and structural analysis of a series of novel tetrahalocuprate(II) hybrids based on small alkylammonium cations. Observed robustness in geometrical motifs provided a platform for crystal structure determination, even from the complex laboratory powder diffraction data. The slight differences in inorganic layer geometry and severe differences in organic bilayer packing are quantified using well-established descriptors for these materials, and dependences of geometric parameters on anion and cation choice are accounted for. Temperature dependence of structural parameters for one of the tetrachlorocuprate hybrids that was chosen as a model unveils a possible geometrical origin of thermochromism in these materials.

7.
J Org Chem ; 87(23): 16054-16062, 2022 12 02.
Article En | MEDLINE | ID: mdl-36383733

We describe the first total synthesis of penicyclone A, a novel deep-sea fungus-derived polyketide, and a reevaluation of its antimicrobial activity. The synthesis of this unique spirolactone was achieved in 10 steps starting from a known d-ribose derivative. The key steps include a double Grignard reaction for the diastereoselective construction of the chiral tertiary alcohol intermediate, tandem oxidation/cyclization, and photooxygenation, followed by an oxidative rearrangement to introduce the enone functionality.


Cyclization , Oxidation-Reduction , Stereoisomerism
8.
Materials (Basel) ; 14(7)2021 Apr 01.
Article En | MEDLINE | ID: mdl-33916071

Hybrid metal-organic compounds as relatively new and prosperous magnetoelectric multiferroics provide opportunities to improve the polarization, magnetization and magneto-electric coupling at the same time, which usually have some limitations in the common type-I and type-II multiferroics. In this work we investigate the crystal of guanidinium copper (II) formate [C(NH2)3]Cu(HCOO)3 and give novel insights concerning the structure, magnetic, electric and magneto-electric behaviour of this interesting material. Detailed analysis of crystal structure at 100 K is given. Magnetization points to the copper (II) formate spin-chain phase that becomes ordered below 4.6 K into the canted antiferromagnetic (AFM) state, as a result of super-exchange interaction over different formate bridges. The performed ab-initio colinear density functional theory (DFT) calculations confirm the AFM-like ground state as a first approximation and explain the coupling of spin-chains into the AFM ordered lattice. In versatile measurements of magnetization of a crystal, including transverse component besides the longitudinal one, very large anisotropy is found that might originate from canting of the coordination octahedra around copper (II) in cooperation with the canted AFM order. With cooling down in zero fields the generation of spontaneous polarization is observed step-wise below 270 K and 210 K and the effect of magnetic field on its value is observed also in the paramagnetic phase. Measured polarization is somewhat smaller than the DFT value in the c-direction, possibly due to twin domains present in the crystal. The considerable magneto-electric coupling below the magnetic transition temperature is measured with different orientations of the crystal in magnetic field, giving altogether the new light onto the magneto-electric effect in this material.

9.
Materials (Basel) ; 13(10)2020 May 21.
Article En | MEDLINE | ID: mdl-32455679

In this work, we explore the halogen-bonded cocrystallization potential of cobaloxime complexes in the synthesis of cocrystals with perhalogenated benzenes. We demonstrate a strategy for synthesizing halogen-bonded metal-organic cocrystals by utilizing cobaloximes whose pendant bromide group and oxime oxygen enable halogen bonding. By combining three well-known halogen bond donor molecules differing in binding geometry and composition with three cobaloxime units, we obtained a total of four previously unreported cocrystals. Single crystal X-ray diffraction experiments showed that the majority of obtained cocrystals exhibited the formation of the targeted I···O and I···Br motives. These results illustrate the potential of cobaloximes as halogen bond acceptors and indicate that this type of halogen bond acceptors may offer a novel route to metal-organic halogen-bonded cocrystals.

...