RESUMEN
OBJECTIVE: To investigate key morphometric features identifiable on routine preoperative computed tomography (CT) imaging indicative of incisional hernia (IH) formation following abdominal surgery. BACKGROUND: IH is a pervasive surgical disease that impacts all surgical disciplines operating in the abdominopelvic region and affecting 13% of patients undergoing abdominal surgery. Despite the significant costs and disability associated with IH, there is an incomplete understanding of the pathophysiology of hernia. METHODS: A cohort of patients (n=21,501) that underwent colorectal surgery was identified, and clinical data and demographics were extracted, with a primary outcome of IH. Two datasets of case-control matched pairs were created for feature measurement, classification, and testing. Morphometric linear and volumetric measurements were extracted as features from anonymized preoperative abdominopelvic CT scans. Multivariate Pearson testing was performed to assess correlations among features. Each feature's ability to discriminate between classes was evaluated using 2-sided paired t testing. A support vector machine was implemented to determine the predictive accuracy of the features individually and in combination. RESULTS: Two hundred and twelve patients were analyzed (106 matched pairs). Of 117 features measured, 21 features were capable of discriminating between IH and non-IH patients. These features are categorized into three key pathophysiologic domains: 1) structural widening of the rectus complex, 2) increased visceral volume, 3) atrophy of abdominopelvic skeletal muscle. Individual prediction accuracy ranged from 0.69 to 0.78 for the top 3 features among 117. CONCLUSIONS: Three morphometric domains identifiable on routine preoperative CT imaging were associated with hernia: widening of the rectus complex, increased visceral volume, and body wall skeletal muscle atrophy. This work highlights an innovative pathophysiologic mechanism for IH formation hallmarked by increased intra-abdominal pressure and compromise of the rectus complex and abdominopelvic skeletal musculature.
Asunto(s)
Hernia Incisional , Atrofia , Estudios de Casos y Controles , Humanos , Hernia Incisional/diagnóstico por imagen , Hernia Incisional/etiología , Hernia Incisional/cirugía , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodosRESUMEN
Fully annotated data sets play important roles in medical image segmentation and evaluation. Expense and imprecision are the two main issues in generating ground truth (GT) segmentations. In this paper, in an attempt to overcome these two issues jointly, we propose a method, named SparseGT, which exploit variability among human segmenters to maximally save manual workload in GT generation for evaluating actual segmentations by algorithms. Pseudo ground truth (p-GT) segmentations are created by only a small fraction of workload and with human-level perfection/imperfection, and they can be used in practice as a substitute for fully manual GT in evaluating segmentation algorithms at the same precision. p-GT segmentations are generated by first selecting slices sparsely, where manual contouring is conducted only on these sparse slices, and subsequently filling segmentations on other slices automatically. By creating p-GT with different levels of sparseness, we determine the largest workload reduction achievable for each considered object, where the variability of the generated p-GT is statistically indistinguishable from inter-segmenter differences in full manual GT segmentations for that object. Furthermore, we investigate the segmentation evaluation errors introduced by variability in manual GT by applying p-GT in evaluation of actual segmentations by an algorithm. Experiments are conducted on â¼500 computed tomography (CT) studies involving six objects in two body regions, Head & Neck and Thorax, where optimal sparseness and corresponding evaluation errors are determined for each object and each strategy. Our results indicate that creating p-GT by the concatenated strategy of uniformly selecting sparse slices and filling segmentations via deep-learning (DL) network show highest manual workload reduction by â¼80-96% without sacrificing evaluation accuracy compared to fully manual GT. Nevertheless, other strategies also have obvious contributions in different situations. A non-uniform strategy for slice selection shows its advantage for objects with irregular shape change from slice to slice. An interpolation strategy for filling segmentations can achieve â¼60-90% of workload reduction in simulating human-level GT without the need of an actual training stage and shows potential in enlarging data sets for training p-GT generation networks. We conclude that not only over 90% reduction in workload is feasible without sacrificing evaluation accuracy but also the suitable strategy and the optimal sparseness level achievable for creating p-GT are object- and application-specific.
Asunto(s)
Algoritmos , Tomografía Computarizada por Rayos X , Humanos , Procesamiento de Imagen Asistido por ComputadorRESUMEN
BACKGROUND: Radiologic assessment of malignant pleural mesothelioma (MPM) on computed tomography (CT) imaging can be limited by similar attenuations of MPM and adjacent tissues. This can result in inaccuracies in defining the presence and extent of pleural tumor burden. We hypothesized that increasing the time delay for pleural enhancement will optimize discrimination between MPM and noncancerous tissues on CT. Here we conduct a prospective observational study to determine the optimal time delay for imaging MPM on CT. PATIENTS AND METHODS: Adult MPM patients (n = 15) were enrolled in this prospective exploratory imaging trial. Patients with < 1 cm MPM thickness, prior pleurectomy, pleurodesis, pleural radiotherapy, or antiangiogenic therapy were excluded. All patients underwent a dynamically-enhanced CT with multiple time delays (0 - 10 minutes) after intravenous contrast administration. Tumor tissue attenuation was measured at each phase of enhancement. A qualitative assessment of tumor enhancement kinetics was also performed. The optimal phase of enhancement based on qualitative lesion conspicuity and quantitative tumor enhancement was then compared. RESULTS: MPM tumor enhancement was quantitatively and qualitatively increased at time delays beyond the conventional time delay for thoracic CT imaging (40-60 seconds). Patient tumor enhancement kinetics, displayed as the fraction of maximal tumor tissue attenuation as a function of time, revealed an optimal time delay of 230 to 300 seconds after intravenous contrast administration. There was an association between degree of tumor enhancement and subjective lesion conspicuity. CONCLUSION: Optimal MPM contrast enhancement occurs at a later phase than typically acquired with conventional thoracic CT imaging.
Asunto(s)
Mesotelioma Maligno/diagnóstico por imagen , Neoplasias Pleurales/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Masculino , Mesotelioma Maligno/patología , Persona de Mediana Edad , Neoplasias Pleurales/patología , Estudios Prospectivos , Factores de Tiempo , Carga TumoralRESUMEN
BACKGROUND: A database of normative quantitative measures of regional thoracic ventilatory dynamics, which is essential to understanding better thoracic growth and function in children, does not exist. RESEARCH QUESTION: How to quantify changes in the components of ventilatory pump dynamics during childhood via thoracic quantitative dynamic MRI (QdMRI)? STUDY DESIGN AND METHODS: Volumetric parameters were derived via 51 dynamic MRI scans for left and right lungs, hemidiaphragms, and hemichest walls during tidal breathing. Volume-based symmetry and functional coefficients were defined to compare left and right sides and to compare contributions of the hemidiaphragms and hemichest walls with tidal volumes (TVs). Statistical analyses were performed to compare volume components among four age-based groups. RESULTS: Right thoracic components were significantly larger than left thoracic components, with average ratios of 1.56 (95% CI, 1.41-1.70) for lung TV, 1.81 (95% CI, 1.60-2.03) for hemidiaphragm excursion TV, and 1.34 (95% CI, 1.21-1.47) for hemichest wall excursion TV. Right and left lung volumes at end-expiration showed, respectively, a 44% and 48% increase from group 2 (8 ≤ age < 10) to group 3 (10 ≤ age < 12). These numbers from group 3 to group 4 (12 ≤ age ≤ 14) were 24% and 28%, respectively. Right and left hemichest wall TVs exhibited, respectively, 48% and 45% increases from group 3 to group 4. INTERPRETATION: Normal right and left ventilatory volume components have considerable asymmetry in morphologic features and dynamics and change with age. Chest wall and diaphragm contributions vary in a likewise manner. Thoracic QdMRI can provide quantitative data to characterize the regional function and growth of the thorax as it relates to ventilation.
Asunto(s)
Desarrollo Infantil , Imagen por Resonancia Magnética/métodos , Sistema Respiratorio/diagnóstico por imagen , Sistema Respiratorio/crecimiento & desarrollo , Tórax/diagnóstico por imagen , Tórax/crecimiento & desarrollo , Adolescente , Niño , Femenino , Humanos , Masculino , Pennsylvania , Valores de Referencia , Respiración , Pruebas de Función RespiratoriaRESUMEN
STUDY OBJECTIVES: The objective of this study was to determine whether tongue fat is increased in obese sleep apneics compared to obese subjects without sleep apnea. We hypothesized that excess fat is deposited in the tongue in obese patients with sleep apnea. DESIGN: Case-control design. SETTING: Academic medical center. PATIENTS: We examined tongue fat in 31 obese controls (apnea-hypopnea index, 4.1 ± 2.7 events/h) and 90 obese apneics (apnea-hypopnea index, 43.2 ± 27.3 events/h). Analyses were repeated in a subsample of 18 gender-, race-, age-, and BMI-matched case-control pairs. INTERVENTIONS: All subjects underwent a MRI with three-point Dixon magnetic resonance imaging. We used sophisticated volumetric reconstruction algorithms to study the size and distribution of upper airway fat deposits in the tongue and masseter muscles within apneics and obese controls. MEASUREMENTS AND RESULTS: The data supported our a priori hypotheses that after adjustment for age, BMI, gender, and race, the tongue in apneics was significantly larger (P = 0.001) and had an increased amount of fat (P = 0.002) compared to controls. Similar results were seen in our matched sample. Our data also demonstrate that within the apneic and normal tongue, there are regional differences in fat distribution, with larger fat deposits at the base of the tongue. CONCLUSIONS: There is increased tongue volume and deposition of fat at the base of tongue in apneics compared to controls. Increased tongue fat may begin to explain the relationship between obesity and obstructive sleep apnea.
Asunto(s)
Adiposidad , Apnea Obstructiva del Sueño/fisiopatología , Lengua/anatomía & histología , Adulto , Índice de Masa Corporal , Estudios de Casos y Controles , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Músculo Masetero/anatomía & histología , Músculo Masetero/fisiopatología , Persona de Mediana Edad , Obesidad/fisiopatología , Grupos Raciales , Sistema Respiratorio/anatomía & histología , Sistema Respiratorio/fisiopatología , Lengua/fisiopatologíaRESUMEN
Off-target toxicity due to the expression of target antigens in normal tissue represents a major obstacle to the use of chimeric antigen receptor (CAR)-engineered T cells for treatment of solid malignancies. To circumvent this issue, we established a clinical platform for engineering T cells with transient CAR expression by using in vitro transcribed mRNA encoding a CAR that includes both the CD3-ζ and 4-1BB co-stimulatory domains. We present two case reports from ongoing trials indicating that adoptive transfer of mRNA CAR T cells that target mesothelin (CARTmeso cells) is feasible and safe without overt evidence of off-tumor on-target toxicity against normal tissues. CARTmeso cells persisted transiently within the peripheral blood after intravenous administration and migrated to primary and metastatic tumor sites. Clinical and laboratory evidence of antitumor activity was demonstrated in both patients and the CARTmeso cells elicited an antitumor immune response revealed by the development of novel anti-self antibodies. These data demonstrate the potential of utilizing mRNA engineered T cells to evaluate, in a controlled manner, potential off-tumor on-target toxicities and show that short-lived CAR T cells can induce epitope-spreading and mediate antitumor activity in patients with advanced cancer. Thus, these findings support the development of mRNA CAR-based strategies for carcinoma and other solid tumors.
Asunto(s)
Proteínas Ligadas a GPI/inmunología , Inmunoterapia Adoptiva/métodos , Neoplasias Pulmonares/terapia , Mesotelioma/terapia , Neoplasias Pancreáticas/terapia , Neoplasias Pleurales/terapia , Receptores de Antígenos de Linfocitos T/genética , Anciano , Anciano de 80 o más Años , Quimerismo , Electroporación/métodos , Estudios de Factibilidad , Ingeniería Genética/métodos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Neoplasias Pulmonares/inmunología , Masculino , Mesotelina , Mesotelioma/inmunología , Mesotelioma Maligno , Neoplasias Pancreáticas/inmunología , Neoplasias Pleurales/inmunología , ARN Mensajero/genética , Receptores de Antígenos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/inmunologíaRESUMEN
PURPOSE: This phase I study investigated the maximum-tolerated dose (MTD), safety, pharmacodynamics, immunologic correlatives, and antitumor activity of CP-870,893, an agonist CD40 antibody, when administered in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma (PDA). EXPERIMENTAL DESIGN: Twenty-two patients with chemotherapy-naïve advanced PDA were treated with 1,000 mg/m(2) gemcitabine once weekly for three weeks with infusion of CP-870,893 at 0.1 or 0.2 mg/kg on day three of each 28-day cycle. RESULTS: CP-870,893 was well-tolerated; one dose-limiting toxicity (grade 4, cerebrovascular accident) occurred at the 0.2 mg/kg dose level, which was estimated as the MTD. The most common adverse event was cytokine release syndrome (grade 1 to 2). CP-870,893 infusion triggered immune activation marked by an increase in inflammatory cytokines, an increase in B-cell expression of costimulatory molecules, and a transient depletion of B cells. Four patients achieved a partial response (PR). 2-[(18)F]fluoro-2-deoxy-d-glucose-positron emission tomography/computed tomography (FDG-PET/CT) showed more than 25% decrease in FDG uptake within primary pancreatic lesions in six of eight patients; however, responses observed in metastatic lesions were heterogeneous, with some lesions responding with complete loss of FDG uptake, whereas other lesions in the same patient failed to respond. Improved overall survival correlated with a decrease in FDG uptake in hepatic lesions (R = -0.929; P = 0.007). CONCLUSIONS: CP-870,893 in combination with gemcitabine was well-tolerated and associated with antitumor activity in patients with PDA. Changes in FDG uptake detected on PET/CT imaging provide insight into therapeutic benefit. Phase II studies are warranted.