Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Trans Vis Comput Graph ; 29(3): 1651-1663, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34780328

RESUMEN

We present a novel approach for volume exploration that is versatile yet effective in isolating semantic structures in both noisy and clean data. Specifically, we describe a hierarchical active contours approach based on Bhattacharyya gradient flow which is easier to control, robust to noise, and can incorporate various types of statistical information to drive an edge-agnostic exploration process. To facilitate a time-bound user-driven volume exploration process that is applicable to a wide variety of data sources, we present an efficient multi-GPU implementation that (1) is approximately 400 times faster than a single thread CPU implementation, (2) allows hierarchical exploration of 2D and 3D images, (3) supports customization through multidimensional attribute spaces, and (4) is applicable to a variety of data sources and semantic structures. The exploration system follows a 2-step process. It first applies active contours to isolate semantically meaningful subsets of the volume. It then applies transfer functions to the isolated regions locally to produce clear and clutter-free visualizations. We show the effectiveness of our approach in isolating and visualizing structures-of-interest without needing any specialized segmentation methods on a variety of data sources, including 3D optical microscopy, multi-channel optical volumes, abdominal and chest CT, micro-CT, MRI, simulation, and synthetic data. We also gathered feedback from a medical trainee regarding the usefulness of our approach and discussion on potential applications in clinical workflows.

2.
IEEE Trans Radiat Plasma Med Sci ; 6(7): 755-765, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36059429

RESUMEN

Attenuation correction (AC) is important for accurate interpretation of SPECT myocardial perfusion imaging (MPI). However, it is challenging to perform AC in dedicated cardiac systems not equipped with a transmission imaging capability. Previously, we demonstrated the feasibility of generating attenuation-corrected SPECT images using a deep learning technique (SPECTDL) directly from non-corrected images (SPECTNC). However, we observed performance variability across patients which is an important factor for clinical translation of the technique. In this study, we investigate the feasibility of overcoming the performance variability across patients for the direct AC in SPECT MPI by proposing to develop an advanced network and a data management strategy. To investigate, we compared the accuracy of the SPECTDL for the conventional U-Net and Wasserstein cycle GAN (WCycleGAN) networks. To manage the training data, clustering was applied to a representation of data in the lower-dimensional space, and the training data were chosen based on the similarity of data in this space. Quantitative analysis demonstrated that DL model with an advanced network improves the global performance for the AC task with the limited data. However, the regional results were not improved. The proposed data management strategy demonstrated that the clustered training has potential benefit for effective training.

3.
Artículo en Inglés | MEDLINE | ID: mdl-33727759

RESUMEN

Attenuation correction (AC) is important for an accurate interpretation and quantitative analysis of SPECT myocardial perfusion imaging. Dedicated cardiac SPECT systems have invaluable efficacy in the evaluation and risk stratification of patients with known or suspected cardiovascular disease. However, most dedicated cardiac SPECT systems are standalone, not combined with a transmission imaging capability such as computed tomography (CT) for generating attenuation maps for AC. To address this problem, we propose to apply a conditional generative adversarial network (cGAN) for generating attenuation-corrected SPECT images (SPECTGAN ) directly from non-corrected SPECT images (SPECTNC ) in image domain as a one-step process without requiring additional intermediate step. The proposed network was trained and tested for 100 cardiac SPECT/CT data from a GE Discovery NM 570c SPECT/CT, collected retrospectively at Yale New Haven Hospital.The generated images were evaluated quantitatively through the normalized root mean square error (NRMSE), peak signal to noise ratio (PSNR), and structural similarity index (SSIM) and statistically through joint histogram and error maps. In comparison to the reference CT-based correction (SPECTCTAC ), NRMSEs were 0.2258±0.0777 and 0.1410±0.0768 (37.5% reduction of errors); PSNRs 31.7712±2.9965 and 36.3823±3.7424 (14.5% improvement in signal to noise ratio); SSIMs 0.9877±0.0075 and 0.9949±0.0043 (0.7% improvement in structural similarity) for SPECTNC and SPECTGAN , respectively. This work demonstrates that the conditional adversarial training can achieve accurate CT-less attenuation correction for SPECT MPI, that is quantitatively comparable to CTAC. Standalone dedicated cardiac SPECT scanners can benefit from the proposed GAN to reduce attenuation artifacts efficiently.

4.
Med Phys ; 46(4): 1634-1647, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30723944

RESUMEN

PURPOSE: For computed tomography (CT) systems in which noise is nonstationary, a local noise power spectrum (NPS) is often needed to characterize its noise property. We have previously developed a data-efficient radial NPS method to estimate the two-dimensional (2D) local NPS for filtered back projection (FBP)-reconstructed fan-beam CT utilizing the polar separability of CT NPS. In this work, we extend this method to estimate three-dimensional (3D) local NPS for feldkamp-davis-kress (FDK)-reconstructed cone-beam CT (CBCT) volumes. METHODS: Starting from the 2D polar separability, we analyze the CBCT geometry and FDK image reconstruction process to derive the 3D expression of the polar separability for CBCT local NPS. With the polar separability, the 3D local NPS of CBCT can be decomposed into a 2D radial NPS shape function and a one-dimensional (1D) angular amplitude function with certain geometrical transforms. The 2D radial NPS shape function is a global function characterizing the noise correlation structure, while the 1D angular amplitude function is a local function reflecting the varying local noise amplitudes. The 3D radial local NPS method is constructed from the polar separability. We evaluate the accuracy of the 3D radial local NPS method using simulated and real CBCT data by comparing the radial local NPS estimates to a reference local NPS in terms of normalized mean squared error (NMSE) and a task-based performance metric (lesion detectability). RESULTS: In both simulated and physical CBCT examples, a very small NMSE (<5%) was achieved by the radial local NPS method from as few as two scans, while for the traditional local NPS method, about 20 scans were needed to reach this accuracy. The results also showed that the detectability-based system performances computed using the local NPS estimated with the NPS method developed in this work from two scans closely reflected the actual system performance. CONCLUSIONS: The polar separability greatly reduces the data dimensionality of the 3D CBCT local NPS. The radial local NPS method developed based on this property is shown to be capable of estimating the 3D local NPS from only two CBCT scans with acceptable accuracy. The minimum data requirement indicates the potential utility of local NPS in CBCT applications even for clinical situations.


Asunto(s)
Algoritmos , Tomografía Computarizada de Haz Cónico/métodos , Tomografía Computarizada Cuatridimensional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Fantasmas de Imagen , Humanos , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA