Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202400718, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39003595

RESUMEN

Being a low-toxic and hydrophilic representative of TAM, OX063 has shown its suitability for in-vivo and in-cell EPR experiments and design of spin labels. Using 13C labeling, we investigated the course of oxidative degradation of OX063 into quinone-methide (QM) under the influence of superoxide as well as further thiol-promoted reduction of QM into TAM radical, which formally corresponds to substitution of a carboxyl function by a hydroxyl group. We found these transformations being quantitative in model reactions mimicking specific features of biological media and confirmed the presence of these reactions in the blood and liver homogenate of mice in vitro. The emergence of the trityl with the hydroxyl group can be masked by an initial TAM in EPR spectra and may introduce distortions into EPR-derived oximetry data if they have been obtained for objects under hypoxia. 13C labeling allows one to detect its presence, considering its different hyperfine splitting constant on 13C1 (2.04 mT) as compared to OX063 (2.30 mT). The potential involvement of these reactions should be considered when using TAM in spin-labeling of biopolymers intended for subsequent EPR experiments, as well as in the successful application of TAM in experiments in vivo and in cell.

3.
Front Med (Lausanne) ; 10: 1269689, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37904839

RESUMEN

Background: Clinical attempts to find benefit from specifically targeting and boosting resistant hypoxic tumor subvolumes have been promising but inconclusive. While a first preclinical murine tumor type showed significant improved control with hypoxic tumor boosts, a more thorough investigation of efficacy from boosting hypoxic subvolumes defined by electron paramagnetic resonance oxygen imaging (EPROI) is necessary. The present study confirms improved hypoxic tumor control results in three different tumor types using a clonogenic assay and explores potential confounding experimental conditions. Materials and methods: Three murine tumor models were used for multi-modal imaging and radiotherapy: MCa-4 mammary adenocarcinomas, SCC7 squamous cell carcinomas, and FSa fibrosarcomas. Registered T2-weighted MRI tumor boundaries, hypoxia defined by EPROI as pO2 ≤ 10 mmHg, and X-RAD 225Cx CT boost boundaries were obtained for all animals. 13 Gy boosts were directed to hypoxic or equal-integral-volume oxygenated tumor regions and monitored for regrowth. Kaplan-Meier survival analysis was used to assess local tumor control probability (LTCP). The Cox proportional hazards model was used to assess the hazard ratio of tumor progression of Hypoxic Boost vs. Oxygenated Boost for each tumor type controlling for experimental confounding variables such as EPROI radiofrequency, tumor volume, hypoxic fraction, and delay between imaging and radiation treatment. Results: An overall significant increase in LTCP from Hypoxia Boost vs. Oxygenated Boost treatments was observed in the full group of three tumor types (p < 0.0001). The effects of tumor volume and hypoxic fraction on LTCP were dependent on tumor type. The delay between imaging and boost treatments did not have a significant effect on LTCP for all tumor types. Conclusion: This study confirms that EPROI locates resistant tumor hypoxic regions for radiation boost, increasing clonogenic LTCP, with potential enhanced therapeutic index in three tumor types. Preclinical absolute EPROI may provide correction for clinical hypoxia images using additional clinical physiologic MRI.

4.
J Phys Chem Lett ; 14(31): 7059-7064, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37526333

RESUMEN

Dynamic nuclear polarization (DNP) is routinely used as a method for increasing the sensitivity to nuclear magnetic resonance (NMR). Recently, high-field solid-effect DNP in viscous liquids on 1H nuclei was demonstrated using narrow-line polarizing agents. Here we expand the applicability of DNP in viscous media to 13C nuclei. To hyperpolarize 13C nuclei, we combined solid-effect 1H DNP with a subsequent transfer of the 1H polarization to 13C via insensitive nuclei enhanced by polarization transfer (INEPT). We demonstrate this approach using a triarylmethyl radical as a polarizing agent and glycerol-13C3 as an analyte. We achieved 13C enhancement factors of up to 45 at a magnetic field of 9.4 T and room temperature.

5.
J Am Chem Soc ; 145(18): 10268-10274, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37104685

RESUMEN

Dynamic nuclear polarization (DNP) is a hyperpolarization method that is widely used for increasing the sensitivity of nuclear magnetic resonance (NMR) experiments. DNP is efficient in solid-state and liquid-state NMR, but its implementation in the intermediate state, namely, viscous media, is still less explored. Here, we show that a 1H DNP enhancement of over 50 can be obtained in viscous liquids at a magnetic field of 9.4 T and a temperature of 315 K. This was accomplished by using narrow-line polarizing agents in glycerol, both the water-soluble α,γ-bisdiphenylen-ß-phenylallyl (BDPA) and triarylmethyl radicals, and a microwave/RF double-resonance probehead. We observed DNP enhancements with a field profile indicative of the solid effect and investigated the influence of microwave power, temperature, and concentration on the 1H NMR results. To demonstrate potential applications of this new DNP approach for chemistry and biology, we show hyperpolarized 1H NMR spectra of tripeptides, triglycine, and glypromate, in glycerol-d8.

6.
Phys Chem Chem Phys ; 24(7): 4475-4484, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35113093

RESUMEN

Triplet states of photoexcited organic molecules are promising spin labels with advanced spectroscopic properties for pulsed dipolar electron paramagnetic resonance (PD EPR) spectroscopy. Recently proposed triplet fullerene labels have shown great potential for double electron-electron resonance (DEER) distance measurements as "observer spins" due to a high quantum yield of the triplet state, hyperpolarization and relatively narrow EPR spectra. Here, we demonstrate the applicability of fullerene labels to other PD EPR techniques, such as relaxation induced dipolar modulation enhancement (RIDME) and laser induced magnetic dipolar spectroscopy (LaserIMD). In particular, a specific contaminating signal in LaserIMD experiments was observed, explained and mitigated. Comparative analyses of the signal-to-noise (SNR) ratios were performed for all employed methods. DEER on the fullerene-triarylmethyl pair shows the best performance, which allows state-of-the-art DEER acquisition at 100 nM with a SNR of ∼35 within reasonable 42 hours.


Asunto(s)
Fulerenos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Marcadores de Spin
7.
Chemistry ; 27(7): 2299-2304, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33197077

RESUMEN

In situ investigation of membrane proteins is a challenging task. Previously we demonstrated that nitroxide labels combined with pulsed ESR spectroscopy is a promising tool for this purpose. However, the nitroxide labels suffer from poor stability, high background labeling, and low sensitivity. Here we show that Finland (FTAM) and OX063 based labels enable labeling of the cobalamin transporter BtuB and BamA, the central component of the ß-barrel assembly machinery (BAM) complex, in E coli. Compared to the methanethiosulfonate spin label (MTSL), trityl labels eliminated the background signals and enabled specific in situ labeling of the proteins with high efficiency. The OX063 labels show a long phase memory time (TM ) of ≈5 µs. All the trityls enabled distance measurements between BtuB and an orthogonally labeled substrate with high selectivity and sensitivity down to a few µm concentration. Our data corroborate the BtuB and BamA conformations in the cellular environment of E. coli.


Asunto(s)
Proteínas de Escherichia coli/análisis , Escherichia coli/química , Proteínas de la Membrana/análisis , Compuestos de Sulfhidrilo/análisis , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/citología , Finlandia , Marcadores de Spin
8.
J Phys Chem Lett ; 11(15): 6286-6290, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32667797

RESUMEN

We demonstrate a series of multitrityl radical compounds where accurate spin-counting by pulsed electron paramagnetic resonance (EPR) can be achieved at X-band (9 GHz) frequencies, even for molecules with very short and flexible linkers. Multiquantum filter experiments, well-known from NMR, were used to count the number of coupled electron spins in these compounds. The six pulse double quantum filter sequence used in EPR for distance determinations in biradicals was used. Precise phase settings to separate higher quantum coherences were achieved by an arbitrary waveform generator. The trityl radicals have narrow spectral width so that homogeneous excitation of all spins by the pulses is possible. The transversal relaxation times of higher quantum coherences of trityl radicals are sufficiently long to allow their detection. Our results on model compounds show the potential of this approach to determine oligomeric states in protein complexes in their native environment using functionalized trityl spin labels.


Asunto(s)
Radicales Libres/química , Compuestos de Tritilo/química , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Membrana Dobles de Lípidos/química , Proteínas Mitocondriales/química , Modelos Moleculares , Relación Estructura-Actividad
9.
Phys Chem Chem Phys ; 22(3): 1019-1026, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31850431

RESUMEN

During the last decades, persistent tris(2,3,5,6-tetrathiaaryl)methyl radicals (TAMs) have attracted much attention due to their applications in oximetry, EPR tomography, and as spin labels in pulsed dipolar EPR spectroscopy. Recently, researchers proposed to use TAM radicals as spin labels and/or a partner for photoinduced spin labels. Thus, the questions of their photochemical stability and mechanism of degradation under UV irradiation have become relevant and important. In this study, steady-state photolysis and flash photolysis of TAM radicals were investigated. A detailed mechanism of TAM phototransformations was proposed and confirmed by NMR, gel permeation chromatography, and mass-spectrometric analyses of the products.

10.
Chemistry ; 26(12): 2705-2712, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-31851392

RESUMEN

Trityl radicals (TAMs) have recently appeared as an alternative source of spin labels for measuring long distances in biological systems. Finland trityl radical (FTAM) served as the basis for this new generation of spin labels, but FTAM is rather lipophilic and susceptible to self-aggregation, noncovalent binding with lipophilic sites of proteins, and noncovalent docking at the termini of duplex DNA. In this paper the very hydrophilic OX063 TAM with very low toxicity and little tendency for aggregation is used as the basis for a spin label. Human serum albumin (HSA) labeled with OX063 has an intense narrow line typical of TAM radicals in solution, whereas HSA labeled with FTAM shows broad lines and extensive aggregation. In pulse EPR measurements, the measured phase memory time TM for HSA labeled with OX063 is 6.3 µs at 50 K, the longest yet obtained with a TAM-based spin label. The lowered lipophilicity also decreases side products in the labeling reaction.


Asunto(s)
Indicadores y Reactivos/química , Mesilatos/química , Albúmina Sérica Humana/química , Compuestos de Sulfhidrilo/química , Espectroscopía de Resonancia por Spin del Electrón , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular , Marcadores de Spin , Relación Estructura-Actividad , Temperatura
11.
J Phys Chem A ; 123(34): 7507-7517, 2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31373818

RESUMEN

Trityl and nitroxide radicals are connected by π-topologically controlled aryl linkers, generating genuinely g-engineered biradicals. They serve as a typical model for biradicals in which the exchange (J) and hyperfine interactions compete with the g-difference electronic Zeeman interactions. The magnetic properties underlying the biradical spin Hamiltonian for solution, including J's, have been determined by multifrequency CW-ESR and 1H ENDOR spectroscopy and compared with those obtained by quantum chemical calculations. The experimental J values were in good agreement with the quantum chemical calculations. The g-engineered biradicals have been tested as a prototype for AWG (Arbitrary Wave Generator)-based spin manipulation techniques, which enable GRAPE (GRAdient Pulse Engineering) microwave control of spins in molecular magnetic resonance spectroscopy for use in molecular spin quantum computers, demonstrating efficient signal enhancement of specific weakened hyperfine signals. Dynamic nuclear polarization (DNP) effects of the biradicals for 400 MHz nuclear magnetic resonance signal enhancement have been examined, giving efficiency factors of 30 for 1H and 27.8 for 13C nuclei. The marked DNP results show the feasibility of these biradicals for hyperpolarization.

12.
Nucleic Acids Res ; 47(15): 7767-7780, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31329919

RESUMEN

A DNA molecule is under continuous influence of endogenous and exogenous damaging factors, which produce a variety of DNA lesions. Apurinic/apyrimidinic sites (abasic or AP sites) are among the most common DNA lesions. In this work, we applied pulse dipolar electron paramagnetic resonance (EPR) spectroscopy in combination with molecular dynamics (MD) simulations to investigate in-depth conformational changes in DNA containing an AP site and in a complex of this DNA with AP endonuclease 1 (APE1). For this purpose, triarylmethyl (TAM)-based spin labels were attached to the 5' ends of an oligonucleotide duplex, and nitroxide spin labels were introduced into APE1. In this way, we created a system that enabled monitoring the conformational changes of the main APE1 substrate by EPR. In addition, we were able to trace substrate-to-product transformation in this system. The use of different (orthogonal) spin labels in the enzyme and in the DNA substrate has a crucial advantage allowing for detailed investigation of local damage and conformational changes in AP-DNA alone and in its complex with APE1.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN/química , Oligonucleótidos/química , Marcadores de Spin/síntesis química , Secuencia de Bases , Sitios de Unión , Clonación Molecular , ADN/genética , ADN/metabolismo , Daño del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Oligonucleótidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
13.
Angew Chem Int Ed Engl ; 58(38): 13271-13275, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31322814

RESUMEN

Precise nanoscale distance measurements by pulsed electron paramagnetic resonance (EPR) spectroscopy play a crucial role in structural studies of biomolecules. The properties of the spin labels used in this approach determine the sensitivity limits, attainable distances, and proximity to biological conditions. Herein, we propose and validate the use of photoexcited fullerenes as spin labels for pulsed dipolar (PD) EPR distance measurements. Hyperpolarization and the narrower spectrum of fullerenes compared to other triplets (e.g., porphyrins) boost the sensitivity, and superior relaxation properties allow PD EPR measurements up to a near-room temperature. This approach is demonstrated using fullerene-nitroxide and fullerene-triarylmethyl pairs, as well as a supramolecular complex of fullerene with nitroxide-labeled protein. Photoexcited triplet fullerenes can be considered as new spin labels with outstanding spectroscopic properties for future structural studies of biomolecules.

14.
Int J Radiat Oncol Biol Phys ; 103(4): 977-984, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30414912

RESUMEN

PURPOSE: It has been known for over 100 years that tumor hypoxia, a near-universal characteristic of solid tumors, decreases the curative effectiveness of radiation therapy. However, to date, there are no reports that demonstrate an improvement in radiation effectiveness in a mammalian tumor on the basis of tumor hypoxia localization and local hypoxia treatment. METHODS AND MATERIALS: For radiation targeting of hypoxic subregions in mouse fibrosarcoma, we used oxygen images obtained using pulse electron paramagnetic resonance pO2 imaging combined with 3D-printed radiation blocks. This achieved conformal radiation delivery to all hypoxic areas in FSa fibrosarcomas in mice. RESULTS: We demonstrate that treatment delivering a radiation boost to hypoxic volumes has a significant (P = .04) doubling of tumor control relative to boosts to well-oxygenated volumes. Additional dose to well-oxygenated tumor regions minimally increases tumor control beyond the 15% control dose to the entire tumor. If we can identify portions of the tumor that are more resistant to radiation, it might be possible to reduce the dose to more sensitive tumor volumes without significant compromise in tumor control. CONCLUSIONS: This work demonstrates in a single, intact mammalian tumor type that tumor hypoxia is a local tumor phenomenon whose treatment can be enhanced by local radiation. Despite enormous clinical effort to overcome hypoxic radiation resistance, to our knowledge this is the first such demonstration, even in preclinical models, of targeting additional radiation to hypoxic tumor to improve the therapeutic ratio.


Asunto(s)
Oxígeno/metabolismo , Radioterapia Guiada por Imagen/métodos , Animales , Línea Celular Tumoral , Espectroscopía de Resonancia por Spin del Electrón , Estimación de Kaplan-Meier , Ratones , Hipoxia Tumoral/efectos de la radiación
15.
Free Radic Biol Med ; 130: 120-127, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30416100

RESUMEN

Molecular oxygen, reactive oxygen species and free radicals derived from oxygen play important roles in a broad spectrum of physiological and pathological processes. The quantitative measurement of molecular oxygen in tissues by electron paramagnetic resonance (EPR) has great potential for understanding and diagnosing a number of diseases, and for developing and guiding therapies. This requires improvements in the free radical probe systems that sense and report molecular oxygen levels in vivo. We report on the encapsulation of existing free radical probes in lipophilic gel implants: an in-situ-oleogel and an emulgel, based only on well-known, safe excipients for the incorporation of lipophilic and hydrophilic radicals, respectively. The EPR signals of encapsulated radicals were not altered compared to dissolved radicals. The high solubility of oxygen in lipophilic solvents enhanced oxygen sensitivity. The gels extended the lifetime of the radicals in tissues from tens of minutes to many days, simplifying studies with extended series of measurements. The encapsulated radicals showed a good in vivo response to changes in oxygen supply and seem to circumvent concerns from toxicity of the radical probes. These gels simplify the development of new oxygen-sensitive free radical probes for EPR oximetry by making their in vivo stability, persistence and toxicity a function of the encapsulating gel and not a set of additional requirements for the free radical probe.


Asunto(s)
Radicales Libres/química , Músculos/química , Oximetría/métodos , Oxígeno/análisis , Compuestos de Tritilo/química , Animales , Respiración de la Célula , Células Cultivadas , Espectroscopía de Resonancia por Spin del Electrón , Femenino , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Ratones Endogámicos C3H , Compuestos Orgánicos/química , Especies Reactivas de Oxígeno/metabolismo
16.
J Phys Chem B ; 122(36): 8624-8630, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30137993

RESUMEN

Triarylmethyl (TAM) radicals have become widely used free radicals in the past few years. Their electron spins have long relaxation times and narrow electron paramagnetic resonance (EPR) lines, which make them an important class of probes and tags in biological applications and materials science. In this work, we propose a new approach to characterize librations by means of TAM radicals. The temperature dependence of motional parameter ⟨α2⟩τc, where ⟨α2⟩ is the mean-squared amplitude of librations and τc is their characteristic time, is obtained by comparison of the 1/ Tm phase-relaxation rates at X- and Q-band EPR frequencies. We study three soft matrixes, viz., glassy trehalose and two ionic liquids, using TAMs with optimized relaxation properties OX063D and a dodeca- n-butyl homologue of Finland trityl (DBT). The motional parameters ⟨α2⟩τc obtained using TAMs are in excellent agreement with those obtained by means of nitroxide radicals. At the same time, the new TAM-based approach has (1) greater sensitivity due to the narrower EPR spectrum and (2) greater measuring accuracy and broader temperature range due to longer relaxation times. The developed approach may be fruitfully implemented to probe low-temperature molecular motions of TAM-labeled biopolymers, membrane systems, polymers, molecules in glassy media, and ionic liquids.

17.
J Phys Chem B ; 122(1): 137-143, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29206458

RESUMEN

Triarylmethyl (trityl, TAM) radicals are a promising class of spin labels for nanometer-scale distance measurements in biomolecules at physiological temperatures. However, to date, existing approaches to site-directed TAM labeling of DNA have been limited to label attachment at the termini of oligonucleotides, thus hindering a majority of demanded applications. Herein, we report a new versatile strategy for TAM attachment at arbitrary sites of nucleic acids. It utilizes an achiral non-nucleoside phosphoramidite monomer for automated solid-phase synthesis of oligonucleotides, which are then postsynthetically functionalized with TAM. We demonstrate a synthesis of a set of oligonucleotide complexes that are TAM-labeled at internal or terminal sites, as well as the possibility of measuring interspin distances up to ∼5-6 nm at 298 K using double quantum coherence electron paramagnetic resonance (EPR). Implementation of the developed approach strongly broadens the scope of nucleic acids and nucleoprotein complexes available for nanoscale structural EPR studies at room temperatures.


Asunto(s)
ADN/química , Sondas Moleculares/química , Oligodesoxirribonucleótidos/química , Marcadores de Spin , Compuestos de Tritilo/química , Espectroscopía de Resonancia por Spin del Electrón , Simulación de Dinámica Molecular , Oligodesoxirribonucleótidos/síntesis química , Temperatura
18.
Z Phys Chem (N F) ; 231(4): 777-794, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28539703

RESUMEN

Triarylmethyl (TAM) radicals are widely used in Electron Paramagnetic Resonance (EPR) spectroscopy as spin labels and in EPR imaging as spin probes for in vivo oxymetry. One of the key advantages of TAMs is extremely narrow EPR line, especially in case of deuterated analogues (~5 µT). Another advantage is their slow spin relaxation even at physiological temperatures allowing, in particular, application of pulsed dipolar EPR methods for distance measurements in biomolecules. In this paper a large series of TAM radicals and their deuterated analogues is synthesized, and corresponding spectroscopic parameters including 13C hyperfine constants are obtained for the first time. The negligible dependence of 13C hyperfine constants on solvent, as well as on structure and number of substituents at para-C atoms of aromatic rings, has been found. In addition, we have demonstrated that 13C signals at natural abundance can be employed for successful room-temperature distance measurements using Pulsed Electron Double Resonance (PELDOR or DEER).

19.
Phys Chem Chem Phys ; 18(42): 29549-29554, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27748488

RESUMEN

Spin labels selectively attached to biomolecules allow high-accuracy nanoscale distance measurements using pulsed electron paramagnetic resonance (EPR), in many cases providing the only access to the structure of complex biosystems. Triarylmethyl (TAM) radicals have recently emerged as a new class of spin labels expanding the applicability of the method to physiological temperatures. Along with other factors, the accuracy of the obtained distances crucially relies on the understanding of interactions between biomolecules and spin labels. In this work, we consider such crucial interactions and their impact on pulsed EPR distance measurements in TAM-labeled DNAs. Using orientation-selective high-frequency (94 GHz) double electron-electron resonance (DEER) we demonstrate strong specific interactions between DNA termini and TAM labels, leading to a significant restriction of their conformational mobility. An understanding of such interactions guides the way to select optimum TAM-labeling strategies, thus refining nanoscale EPR distance measurements in nucleic acids and their complexes under physiological conditions.


Asunto(s)
ADN/química , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/química , Electrones , Conformación de Ácido Nucleico , Marcadores de Spin
20.
Phys Chem Chem Phys ; 18(36): 24954-65, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27560644

RESUMEN

Electron spin-lattice relaxation of two trityl radicals, d24-OX063 and Finland trityl, were studied under conditions relevant to their use in dissolution dynamic nuclear polarization (DNP). The dependence of relaxation kinetics on temperature up to 100 K and on concentration up to 60 mM was obtained at X- and W-bands (0.35 and 3.5 Tesla, respectively). The relaxation is quite similar at both bands and for both trityl radicals. At concentrations typical for DNP, relaxation is mediated by excitation transfer and spin-diffusion to fast-relaxing centers identified as triads of trityl radicals that spontaneously form in the frozen samples. These centers relax by an Orbach-Aminov mechanism and determine the relaxation, saturation and electron spin dynamics during DNP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...