Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(7): 369, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834823

RESUMEN

A trendsetting direct competitive-based biosensing tool has been developed and implemented for the determination of the polyunsaturated fatty acid arachidonic acid (ARA), a highly significant biological regulator with decisive roles in viral infections. The designed methodology involves a competitive reaction between the target endogenous ARA and a biotin-ARA competitor for the recognition sites of anti-ARA antibodies covalently attached to the surface of carboxylic acid-coated magnetic microbeads (HOOC-MµBs), followed by the enzymatic label of the biotin-ARA residues with streptavidin-horseradish peroxidase (Strep-HRP) conjugate. The resulting bioconjugates were magnetically trapped onto the sensing surface of disposable screen-printed carbon transducers (SPCEs) to monitor the extent of the biorecognition reaction through amperometry. The operational functioning of the exhaustively optimized and characterized immunosensing bioplatform was highly convenient for the quantitative determination of ARA in serum samples from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2-) and respiratory syncytial virus (RSV)-infected individuals in a rapid, affordable, trustful, and sensitive manner.


Asunto(s)
Ácido Araquidónico , Técnicas Biosensibles , COVID-19 , SARS-CoV-2 , Humanos , Ácido Araquidónico/sangre , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/inmunología , Técnicas Biosensibles/métodos , SARS-CoV-2/inmunología , Peroxidasa de Rábano Silvestre/química , Virus Sincitiales Respiratorios/inmunología , Inmunoensayo/métodos , Estreptavidina/química , Biotina/química , Límite de Detección
2.
Anal Chem ; 96(11): 4580-4588, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38348822

RESUMEN

This work reports the first electrochemical bioplatforms developed for the determination of the total contents of either target miRNA or methylated target miRNA. The bioplatforms are based on the hybridization of the target miRNA with a synthetic biotinylated DNA probe, the capture of the formed DNA/miRNA heterohybrids on the surface of magnetic microcarriers, and their recognition with an antibody selective to these heterohybrids or to the N6-methyladenosine (m6A) epimark. The determination of the total or methylated target miRNA was accomplished by labeling such secondary antibodies with the horseradish peroxidase (HRP) enzyme. In both cases, amperometric transduction was performed on the surface of disposable electrodes after capturing the resulting HRP-tagged magnetic bioconjugates. Because of their increasing relevance in colorectal cancer (CRC) diagnosis and prognosis, miRNA let-7a and m6A methylation were selected. The proposed electrochemical bioplatforms showed attractive analytical and operational characteristics for the determination of the total and m6A-methylated target miRNA in less than 75 min. These bioplatforms, innovative in design and application, were applied to the analysis of total RNA samples extracted from cultured cancer cells with different metastatic profiles and from paired healthy and tumor tissues of patients diagnosed with CRC at different stages. The obtained results demonstrated, for the first time using electrochemical platforms, the potential of interrogating the target miRNA methylation level to discriminate the metastatic capacities of cancer cells and to identify tumor tissues and, in a pioneering way, the potential of the m6A methylation in miRNA let-7a to serve as a prognostic biomarker for CRC.


Asunto(s)
Técnicas Biosensibles , Neoplasias Colorrectales , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/análisis , Epigenoma , Hibridación de Ácido Nucleico/métodos , Anticuerpos/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Pronóstico , Técnicas Biosensibles/métodos
3.
Cancers (Basel) ; 15(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37046764

RESUMEN

Colorectal cancer (CRC) is the third most common cancer and the second most frequent cause of cancer-related death worldwide. The detection in plasma samples of autoantibodies against specific tumor-associated antigens has been demonstrated to be useful for the early diagnosis of CRC by liquid biopsy. However, new studies related to the humoral immune response in cancer are needed to enable blood-based diagnosis of the disease. Here, our aim was to characterize the humoral immune response associated with the different p53 and p63 proteoforms derived from alternative splicing and previously described as aberrantly expressed in CRC. Thus, here we investigated the diagnostic ability of the twelve p53 proteoforms and the eight p63 proteoforms described to date, and their specific N-terminal and C-terminal end peptides, by means of luminescence HaloTag beads immunoassays. Full-length proteoforms or specific peptides were cloned as HaloTag fusion proteins and their seroreactivity analyzed using plasma from CRC patients at stages I-IV (n = 31), individuals with premalignant lesions (n = 31), and healthy individuals (n = 48). p53γ, Δ40p53ß, Δ40p53γ, Δ133p53γ, Δ160p53γ, TAp63α, TAp63δ, ΔNp63α, and ΔNp63δ, together with the specific C-terminal end α and δ p63 peptides, were found to be more seroreactive against plasma from CRC patients and/or individuals with premalignant lesions than from healthy individuals. In addition, ROC (receiver operating characteristic) curves revealed a high diagnostic ability of those p53 and p63 proteoforms to detect CRC and premalignant individuals (AUC higher than 85%). Finally, electrochemical biosensing platforms were employed in POC-like devices to investigate their usefulness for CRC detection using selected p53 and p63 proteoforms. Our results demonstrate not only the potential of these biosensors for the simultaneous analysis of proteoforms' seroreactivity, but also their convenience and versatility for the clinical detection of CRC by liquid biopsy. In conclusion, we here show that p53 and p63 proteoforms possess differential seroreactivity in CRC patients in comparison to controls, distinctive from canonical proteins, which should improve the diagnostic panels for obtaining a blood-based biomarker signature for CRC detection.

4.
Angew Chem Weinheim Bergstr Ger ; 134(28): e202203662, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35941922

RESUMEN

The development of versatile and sensitive biotools to quantify specific SARS-CoV-2 immunoglobulins in SARS-CoV-2 infected and non-infected individuals, built on the surface of magnetic microbeads functionalized with nucleocapsid (N) and in-house expressed recombinant spike (S) proteins is reported. Amperometric interrogation of captured N- and S-specific circulating total or individual immunoglobulin (Ig) isotypes (IgG, IgM, and IgA), subsequently labelled with HRP-conjugated secondary antibodies, was performed at disposable single or multiplexed (8×) screen-printed electrodes using the HQ/HRP/H2O2 system. The obtained results using N and in-house expressed S ectodomains of five SARS-CoV-2 variants of concern (including the latest Delta and Omicron) allow identification of vulnerable populations from those with natural or acquired immunity, monitoring of infection, evaluation of vaccine efficiency, and even identification of the variant responsible for the infection.

5.
Angew Chem Int Ed Engl ; 61(28): e202203662, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35507573

RESUMEN

The development of versatile and sensitive biotools to quantify specific SARS-CoV-2 immunoglobulins in SARS-CoV-2 infected and non-infected individuals, built on the surface of magnetic microbeads functionalized with nucleocapsid (N) and in-house expressed recombinant spike (S) proteins is reported. Amperometric interrogation of captured N- and S-specific circulating total or individual immunoglobulin (Ig) isotypes (IgG, IgM, and IgA), subsequently labelled with HRP-conjugated secondary antibodies, was performed at disposable single or multiplexed (8×) screen-printed electrodes using the HQ/HRP/H2 O2 system. The obtained results using N and in-house expressed S ectodomains of five SARS-CoV-2 variants of concern (including the latest Delta and Omicron) allow identification of vulnerable populations from those with natural or acquired immunity, monitoring of infection, evaluation of vaccine efficiency, and even identification of the variant responsible for the infection.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Anticuerpos Antivirales , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Inmunidad , Inmunoglobulina G , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
6.
Talanta ; 247: 123549, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35609483

RESUMEN

Magnetic nanoparticles (MNPs) can be used as antibody carriers in a wide range of immunosensing applications. The conjugation chemistry for preparing antibody-MNP bionanohybrids should assure the nanoparticle's colloidal dispersity, directional conformation and high biofunctionality retention of attached antibodies. In this work, peroxidase (HRP) was selected as model target analyte, and stable antibody-MNP conjugates were prepared using polyaldehyde-dextrans as multivalent linkers, also to prevent nanoparticles agglomeration and steric shielding of non-specific proteins. Under the manipulation of the oxidation variables, MNP-conjugated antibody showed the highest Fab accessibility, of 1.32 µmol analyte per µmol antibody, corresponding to 139 µmol aldehyde per gram of nanocarrier (5 mM NaIO4, 4 h). Demonstrating anti-interference advantage up to 10% serum, colorimetric immunoassay gave a detection limit (LOD) of 300 ng mL-1, while electrochemical transduction led to a considerable (680 times) improvement, with a LOD of 0.44 ng mL-1. In addition, polyaldehyde-dextran showed priority over polycarboxylated-dextran as the multivalent antibody crosslinker for MNPs in terms of sensitivity and LOD value, while immunosensors constructed with carboxylated magnetic microbeads (HOOC-MBs) outperformed MNPs-based immunoplatforms. This work sheds light on the importance of surface chemistry (type and density of functional groups) and the dimension (nanosize vs micrometer) of magnetic carriers to conjugate antibodies with better directional orientation and improve the analytical performance of the resulting immunosensors.


Asunto(s)
Técnicas Biosensibles , Nanopartículas de Magnetita , Nanopartículas , Anticuerpos , Técnicas Biosensibles/métodos , Dextranos/química , Inmunoensayo/métodos , Magnetismo , Nanopartículas de Magnetita/química , Nanopartículas/química
7.
Anal Chim Acta ; 1182: 338946, 2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34602192

RESUMEN

This work reports the first electrochemical bioplatform developed for the multidetection of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in DNA, DNA N6-methyladenine (6mA) and RNA N6-methyladenosine (m6A) methylations at global level. Direct competitive immunoassays were implemented on the surface of magnetic beads (MBs) and optimized for the single amperometric determination of different targets varying in length, sequence and number of methylations on screen-printed carbon electrodes. After evaluating the sensitivity and selectivity of such determinations and the confirmation of no cross-reactivity, a multiplexed disposable platform allowing the simultaneous determination of the mentioned four methylation events in only 45 min has been prepared. The multiplexed bioplatform was successfully applied to the determination of m6A in cellular total RNA and of 5-mC, 5-hmC and 6mA in genomic DNA extracted from tissues. The developed bioplatform showed its usefulness to discriminate the aggressiveness of cancerous cells and between healthy and tumor tissues of colorectal cancer patients.


Asunto(s)
Ácidos Nucleicos , Adenosina , Humanos , Fenómenos Magnéticos , Metilación , ARN
8.
Biosensors (Basel) ; 11(6)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205541

RESUMEN

A magnetic beads (MB)-involved amperometric immunosensor for the determination of ST2, a member of the IL1 receptor family, is reported in this work. The method utilizes a sandwich immunoassay and disposable screen-printed carbon electrodes (SPCEs). Magnetic immunoconjugates built on the surface of carboxylic acid-microsized magnetic particles (HOOC-MBs) were used to selectively capture ST2. A biotinylated secondary antibody further conjugated with a streptavidin peroxidase conjugate (Strep-HRP) was used to accomplish the sandwiching of the target protein. The immune platform exhibits great selectivity and a low limit of detection (39.6 pg mL-1) for ST2, allowing the determination of soluble ST2 (sST2) in plasma samples from healthy individuals and patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) in only 45 min once the immunoconjugates have been prepared. The good correlation of the obtained results with those provided by an ELISA kit performed using the same immunoreagents demonstrates the potential of the developed strategy for early diagnosis and/or prognosis of the fatal PDAC disease.


Asunto(s)
Técnicas Biosensibles , Inmunoensayo , Neoplasias/diagnóstico , Anticuerpos , Carbono , Técnicas Electroquímicas , Electrodos , Ensayo de Inmunoadsorción Enzimática , Humanos , Peróxido de Hidrógeno , Límite de Detección , Magnetismo
9.
Biosens Bioelectron ; 171: 112708, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33049562

RESUMEN

This work describes the preparation of an immunoplatform for the sensitive and selective determination of N6-methyladenosine (m6A). The simple and fast protocol involves for the first time the use of micromagnetic immunoconjugates to establish a direct competitive assay between the m6A target and a biotinylated RNA oligomer bearing a single m6A enzymatically labelled with a commercial conjugate of streptavidin-peroxidase (Strep-HRP) as tracer. The cathodic current change measured in the presence of H2O2/hydroquinone (HQ) at screen-printed carbon electrodes (SPCEs) upon surface capturing the magnetic bioconjugates is inversely proportional to the m6A target concentration. After evaluating the effect of key variables, the analytical characteristics were established for the determination of three different targets: the N6-methyladenosine-5'-triphosphate (m6ATP) ribonucleotide, a short synthetic RNA oligomer bearing a single m6A and the positive control provided in a commercial colorimetric kit for m6A-RNA quantification. The obtained results show that this immunoplatform is competitive with other methods reported to date, achieving an improved sensitivity (limit of detection of 0.9 pM for the short synthetic oligomer) using a much simpler and faster protocol (~1 h) and disposable electrodes for the transduction. Furthermore, the applicability for discriminating the metastatic potential of cancer cells by directly analyzing a small amount of raw total RNA without enriching or fragmenting was also preliminary assessed.


Asunto(s)
Técnicas Biosensibles , Neoplasias , Adenosina/análogos & derivados , Peróxido de Hidrógeno , Límite de Detección , Fenómenos Magnéticos , Microesferas
10.
Matter ; 3(6): 1981-1998, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33043291

RESUMEN

The COVID-19 pandemic is an ongoing global challenge for public health systems. Ultrasensitive and early identification of infection is critical in preventing widespread COVID-19 infection by presymptomatic and asymptomatic individuals, especially in the community and in-home settings. We demonstrate a multiplexed, portable, wireless electrochemical platform for ultra-rapid detection of COVID-19: the SARS-CoV-2 RapidPlex. It detects viral antigen nucleocapsid protein, IgM and IgG antibodies, as well as the inflammatory biomarker C-reactive protein, based on our mass-producible laser-engraved graphene electrodes. We demonstrate ultrasensitive, highly selective, and rapid electrochemical detection in the physiologically relevant ranges. We successfully evaluated the applicability of our SARS-CoV-2 RapidPlex platform with COVID-19-positive and COVID-19-negative blood and saliva samples. Based on this pilot study, our multiplexed immunosensor platform may allow for high-frequency at-home testing for COVID-19 telemedicine diagnosis and monitoring.

11.
Matter ; 2(4): 921-937, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32266329

RESUMEN

Understanding and assessing endocrine response to stress is crucial to human performance analysis, stress-related disorder diagnosis, and mental health monitoring. Current approaches for stress monitoring are largely based on questionnaires, which could be very subjective. To avoid stress-inducing blood sampling and to realize continuous, non-invasive, and real-time stress analysis at the molecular levels, we investigate the dynamics of a stress hormone, cortisol, in human sweat using an integrated wireless sensing device. Highly sensitive, selective, and efficient cortisol sensing is enabled by a flexible sensor array that exploits the exceptional performance of laser-induced graphene for electrochemical sensing. Herein, we report the first cortisol diurnal cycle and the dynamic stress response profile constructed from human sweat. Our pilot study demonstrates a strong empirical correlation between serum and sweat cortisol, revealing exciting opportunities offered by sweat analysis toward non-invasive dynamic stress monitoring via wearable and portable sensing platforms.

12.
Sci Rep ; 9(1): 11916, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31417117

RESUMEN

Phenotypic drug discovery must take advantage of the large amount of clinical data currently available. In this sense, the impact of microRNAs (miRs) on human disease and clinical therapeutic responses is becoming increasingly well documented. Accordingly, it might be possible to use miR-based signatures as phenotypic read-outs of pathological status, for example in cancer. Here, we propose to use the information accumulating regarding the biology of miRs from clinical research in the preclinical arena, adapting it to the use of miR biosensors in the earliest steps of drug screening. Thus, we have used an amperometric dual magnetosensor capable of monitoring a miR-21/miR-205 signature to screen for new drugs that restore these miRs to non-tumorigenic levels in cell models of breast cancer and glioblastoma. In this way we have been able to identify a new chemical entity, 11PS04 ((3aR,7aS)-2-(3-propoxyphenyl)-7,7a-dihydro-3aH-pyrano[3,4-d]oxazol-6(4H)-one), the therapeutic potential of which was suggested in mechanistic assays of disease models, including 3D cell culture (oncospheres) and xenografts. These assays highlighted the potential of this compound to attack cancer stem cells, reducing the growth of breast and glioblastoma tumors in vivo. These data demonstrate the enhanced chain of translatability of this strategy, opening up new perspectives for drug-discovery pipelines and highlighting the potential of miR-based electro-analytical sensors as efficient tools in modern drug discovery.


Asunto(s)
Técnicas Biosensibles , MicroARNs/metabolismo , Células Madre Neoplásicas/patología , Oxazoles/farmacología , Animales , Antineoplásicos/farmacología , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/patología , Fenómenos Magnéticos , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/patología , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Oxazoles/química , Reproducibilidad de los Resultados , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Temozolomida/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Chem Commun (Camb) ; 54(98): 13813-13816, 2018 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-30460939

RESUMEN

We report a new concept of a chemiluminescence imaging nanozyme immunoassay (CINIA), in which nanozymes are exploited as catalytic tags for simultaneous multiplex detection of cytokines. The CINIA provides a novel and universal nanozyme-labeled multiplex immunoassay strategy for high-throughput detection of relevant biomarkers and further disease diagnosis.


Asunto(s)
Citocinas/análisis , Mediciones Luminiscentes/métodos , Animales , Anticuerpos Inmovilizados/química , Pollos , Cobre/química , Citocinas/sangre , Diseño de Equipo , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ensayos Analíticos de Alto Rendimiento/métodos , Inmunoensayo/instrumentación , Inmunoensayo/métodos , Mediciones Luminiscentes/instrumentación , Nanopartículas/química , Sulfuros/química
14.
Sci Rep ; 8(1): 6418, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29686400

RESUMEN

This paper describes two different electrochemical affinity biosensing approaches for the simple, fast and bisulfite and PCR-free quantification of 5-methylated cytosines (5-mC) in DNA using the anti-5-mC antibody as biorecognition element. One of the biosensing approaches used the anti-5-mC as capture bioreceptor and a sandwich type immunoassay, while the other one involved the use of a specific DNA probe and the anti-5-mC as a detector bioreceptor of the captured methylated DNA. Both strategies, named for simplicity in the text as immunosensor and DNA sensor, respectively, were implemented on the surface of magnetic microparticles and the transduction was accomplished by amperometry at screen-printed carbon electrodes by means of the hydrogen peroxide/hydroquinone system. The resulting amperometric biosensors demonstrated reproducibility throughout the entire protocol, sensitive determination with no need for using amplification strategies, and competitiveness with the conventional enzyme-linked immunosorbent assay methodology and the few electrochemical biosensors reported so far in terms of simplicity, sensitivity and assay time. The DNA sensor exhibited higher sensitivity and allowed the detection of the gene-specific methylations conversely to the immunosensor, which detected global DNA methylation. In addition, the DNA sensor demonstrated successful applicability for 1 h-analysis of specific methylation in two relevant tumor suppressor genes in spiked biological fluids and in genomic DNA extracted from human glioblastoma cells.


Asunto(s)
Técnicas Biosensibles , Metilación de ADN , Técnicas Electroquímicas/instrumentación , Sulfatos/química , Líquidos Corporales/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Electrodos , Glioblastoma/genética , Glioblastoma/patología , Humanos , Límite de Detección , Proteínas Supresoras de Tumor/genética
15.
Sensors (Basel) ; 18(3)2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29543716

RESUMEN

This work reports an amperometric biosensor for the determination of miRNA-21, a relevant oncogene. The methodology involves a competitive DNA-target miRNA hybridization assay performed on the surface of magnetic microbeads (MBs) and amperometric transduction at screen-printed carbon electrodes (SPCEs). The target miRNA competes with a synthetic fluorescein isothiocyanate (FITC)-modified miRNA with an identical sequence for hybridization with a biotinylated and complementary DNA probe (b-Cp) immobilized on the surface of streptavidin-modified MBs (b-Cp-MBs). Upon labeling, the FITC-modified miRNA attached to the MBs with horseradish peroxidase (HRP)-conjugated anti-FITC Fab fragments and magnetic capturing of the MBs onto the working electrode surface of SPCEs. The cathodic current measured at -0.20 V (versus the Ag pseudo-reference electrode) was demonstrated to be inversely proportional to the concentration of the target miRNA. This convenient biosensing method provided a linear range between 0.7 and 10.0 nM and a limit of detection (LOD) of 0.2 nM (5 fmol in 25 µL of sample) for the synthetic target miRNA without any amplification step. An acceptable selectivity towards single-base mismatched oligonucleotides, a high storage stability of the b-Cp-MBs, and usefulness for the accurate determination of miRNA-21 in raw total RNA (RNAt) extracted from breast cancer cells (MCF-7) were demonstrated.


Asunto(s)
Técnicas Biosensibles , Electrodos , Peroxidasa de Rábano Silvestre , Humanos , Campos Magnéticos , MicroARNs , Neoplasias , Hibridación de Ácido Nucleico
16.
ACS Sens ; 3(1): 211-221, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29282977

RESUMEN

Currently, electrochemical nucleic acid-based biosensing methodologies involving hybridization assays, specific recognition of RNA/DNA and RNA/RNA duplexes, and amplification systems provide an attractive alternative to conventional quantification strategies for the routine determination of relevant nucleic acids at different settings. A particularly relevant objective in the development of such nucleic acid biosensors is the design of as many as possible affordable, quick, and simple methods while keeping the required sensitivity. With this aim in mind, this work reports, for the first time, a thorough comparison between 11 methodologies that involve different assay formats and labeling strategies for targeting the same DNA. The assayed approaches use conventional sandwich and competitive hybridization assays, direct hybridization coupled to bioreceptors with affinity for RNA/DNA duplexes, multienzyme labeling bioreagents, and DNA concatamers. All of them have been implemented on the surface of magnetic beads (MBs) and involve amperometric transduction at screen-printed carbon electrodes (SPCEs). The influence of the formed duplex length and of the labeling strategy have also been evaluated. Results demonstrate that these strategies can provide very sensitive methods without the need for using nanomaterials or polymerase chain reaction (PCR). In addition, the sensitivity can be tailored within several orders of magnitude simply by varying the bioassay format, hybrid length or labeling strategy. This comparative study allowed us to conclude that the use of strategies involving longer hybrids, the use of antibodies with specificity for RNA/DNA heteroduplexes and labeling with bacterial antibody binding proteins conjugated with multiple enzyme molecules, provides the best sensitivity.


Asunto(s)
Técnicas Biosensibles/métodos , Diseño de Equipo/métodos , Anticuerpos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/normas , Diseño de Equipo/normas , Hibridación de Ácido Nucleico , Ácidos Nucleicos , Coloración y Etiquetado
17.
Int J Mol Sci ; 18(11)2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29120349

RESUMEN

This work describes a sensitive amperometric magneto-biosensor for single-step and rapid determination of microRNAs (miRNAs). The developed strategy involves the use of direct hybridization of the target miRNA (miRNA-21) with a specific biotinylated DNA probe immobilized on streptavidin-modified magnetic beads (MBs), and labeling of the resulting heteroduplexes with a specific DNA-RNA antibody and the bacterial protein A (ProtA) conjugated with an horseradish peroxidase (HRP) homopolymer (Poly-HRP40) as an enzymatic label for signal amplification. Amperometric detection is performed upon magnetic capture of the modified MBs onto the working electrode surface of disposable screen-printed carbon electrodes (SPCEs) using the H2O2/hydroquinone (HQ) system. The magnitude of the cathodic signal obtained at -0.20 V (vs. the Ag pseudo-reference electrode) demonstrated linear dependence with the concentration of the synthetic target miRNA over the 1.0 to 100 pM range. The method provided a detection limit (LOD) of 10 attomoles (in a 25 µL sample) without any target miRNA amplification in just 30 min (once the DNA capture probe-MBs were prepared). This approach shows improved sensitivity compared with that of biosensors constructed with the same anti-DNA-RNA Ab as capture instead of a detector antibody and further labeling with a Strep-HRP conjugate instead of the Poly-HRP40 homopolymer. The developed strategy involves a single step working protocol, as well as the possibility to tailor the sensitivity by enlarging the length of the DNA/miRNA heteroduplexes using additional probes and/or performing the labelling with ProtA conjugated with homopolymers prepared with different numbers of HRP molecules. The practical usefulness was demonstrated by determination of the endogenous levels of the mature target miRNA in 250 ng raw total RNA (RNAt) extracted from human mammary epithelial normal (MCF-10A) and cancer (MCF-7) cells and tumor tissues.


Asunto(s)
Biomarcadores de Tumor/análisis , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , MicroARNs/análisis , Neoplasias/diagnóstico , Anticuerpos Antinucleares/química , Carbono/química , ADN Complementario/química , Electrodos , Humanos , Límite de Detección , Células MCF-7 , MicroARNs/química , Hibridación de Ácido Nucleico/métodos , Sensibilidad y Especificidad , Factores de Tiempo
18.
Anal Chem ; 89(17): 9474-9482, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28746806

RESUMEN

A novel electrochemical disposable nucleic acid biosensor for simple, rapid, and specific detection of adulterations with horsemeat is reported in this work. The biosensing platform involves immobilization of a 40-mer RNA probe specific for a characteristic fragment of the mitochondrial DNA D-loop region of horse onto the surface of magnetic microcarriers. In addition, signal amplification was accomplished by using a commercial antibody specific to RNA/DNA duplexes and a bacterial protein conjugated with a horseradish peroxidase homopolymer (ProtA-HRP40). Amperometric detection at -0.20 V vs Ag pseudoreference electrode was carried out at disposable screen-printed carbon electrodes. The methodology achieved a limit of detection (LOD) of 0.12 pM (3.0 attomoles) for the synthetic target and showed ability to discriminate between raw beef and horsemeat using just 50 ng of total extracted mitochondrial DNA (∼16 660 bp in length) without previous fragmentation. The biosensor also allowed discrimination between 100% raw beef and beef meat samples spiked with only 0.5% (w/w) horse meat (levels established by the European Commission) using raw mitochondrial lysates without DNA extraction or polymerase chain reaction (PCR) amplification in just 75 min. These interesting features made the developed methodology an extremely interesting tool for beef meat screening, and it can be easily adapted to the determination of other meat adulterations by selection of the appropriate specific fragments of the mitochondrial DNA region and capture probes.


Asunto(s)
ADN Mitocondrial/química , Técnicas Electroquímicas/instrumentación , Carne/análisis , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/veterinaria , Animales , Bovinos , ADN Mitocondrial/genética , Equipos Desechables , Análisis de los Alimentos , Caballos , Reacción en Cadena de la Polimerasa/instrumentación
19.
Nano Lett ; 17(8): 4958-4963, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28656770

RESUMEN

Nanoparticles composed of Prussian Blue, PB, and the cyanometalate structural analogues, CuFe, FeCoFe, and FeCo, are examined as inorganic clusters that mimic the functions of peroxidases. PB acts as a superior catalyst for the oxidation of dopamine to aminochrome by H2O2. The oxidation of dopamine by H2O2 in the presence of PB is 6-fold faster than in the presence of CuFe. The cluster FeCo does not catalyze the oxidation of dopamine to aminochrome. The most efficient catalyst for the generation of chemiluminescence by the oxidation of luminol by H2O2 is, however, FeCo, and PB lacks any catalytic activity toward the generation of chemiluminescence. The order of catalyzed chemiluminescence generation is FeCo ≫ CuFe > FeCoFe. The clusters PB, CuFe, FeCoFe, and FeCo mimic the functions of NADH peroxidase. The catalyzed oxidation of NADH by H2O2 to form NAD+ follows the order PB ≫ CuFe ∼ FeCoFe, FeCo. The efficient generation of chemiluminescence by the FeCo-catalyzed oxidation of luminol by H2O2 is used to develop a glucose sensor. The aerobic oxidation of glucose in the presence of glucose oxidase, GOx, yields gluconic acid and H2O2. The chemiluminescence intensities formed by the GOx-generated H2O2 relate to the concentration of glucose, thus providing a quantitative readout signal for the concentrations of glucose.

20.
PLoS One ; 12(4): e0175056, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28376106

RESUMEN

The first electrochemical immunosensor for the determination of fibroblast growth factor receptor 4 (FGFR4) biomarker is reported in this work. The biosensor involves a sandwich configuration with covalent immobilization of a specific capture antibody onto activated carboxylic-modified magnetic microcarriers (HOOC-MBs) and amperometric detection at disposable carbon screen-printed electrodes (SPCEs). The biosensor exhibits a great analytical performance regarding selectivity for the target protein and a low LOD of 48.2 pg mL-1. The electrochemical platform was successfully applied for the determination of FGFR4 in different cancer cell lysates without any apparent matrix effect after a simple sample dilution and using only 2.5 µg of the raw lysate. Comparison of the results with those provided by a commercial ELISA kit shows competitive advantages by using the developed immunosensor in terms of simplicity, analysis time, and portability and cost-affordability of the required instrumentation for the accurate determination of FGFR4 in cell lysates.


Asunto(s)
Biomarcadores de Tumor/análisis , Técnicas Biosensibles/métodos , Factor 4 de Crecimiento de Fibroblastos/análisis , Técnicas Biosensibles/estadística & datos numéricos , Línea Celular Tumoral , Técnicas Electroquímicas , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoensayo/métodos , Límite de Detección , Células MCF-7 , Magnetismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...