Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39229025

RESUMEN

Exercise is a multipotent stimulus that results in large-scale dynamic changes to the systemic molecular profile. Alternative exercise prescriptions and doses would be expected to result in distinct signatures due to differences in duration and intensity. We tested two novel combined endurance and resistance exercise regimens to better understand how differing prescriptions alter the acute metabolomics response at multiple timepoints up to 24h post-exercise. Serum metabolomics for n=37 untrained individuals was analyzed for participants completing traditional combined exercise [TRAD; n = 20 (11M/9F)] or high-intensity tactical training [HITT; n= 17 (9M/8F)] before exercise (pre), and immediately (h0), 3 and 24 h post-exercise (h3 and h24, respectively). We found minimal metabolites had a group by time interaction (2 with FDR < 0.10; 31 with nominal p < 0.05;), but both stimuli resulted in large-scale within-group changes to the circulating metabolome. TRAD consistently had greater numbers of differentially abundant metabolites (FDR < 0.10) as compared to HITT at h0 (431 vs. 333), h3 (435 vs. 331) and h24 (168 vs. 76). The major metabolite classes altered were related to key energy substrates for both groups at h0 (e.g., glucose, pyruvate) and energy replenishment for h3 and h24 (e.g., 12,13 diHOME, palmitylcarnitine, free fatty acids). In summary, our data are the first to describe the acute changes in the circulating metabolome following combined endurance and resistance exercise. Additionally, we show the two distinct doses of combined exercise led to generally similar patterns of responses, with the longer duration TRAD dose resulting in a higher magnitude of change.

2.
Nat Commun ; 14(1): 5325, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658085

RESUMEN

The mechanisms underlying the transformation of chronic myeloid leukemia (CML) from chronic phase (CP) to blast crisis (BC) are not fully elucidated. Here, we show lower levels of miR-142 in CD34+CD38- blasts from BC CML patients than in those from CP CML patients, suggesting that miR-142 deficit is implicated in BC evolution. Thus, we create miR-142 knockout CML (i.e., miR-142-/-BCR-ABL) mice, which develop BC and die sooner than miR-142 wt CML (i.e., miR-142+/+BCR-ABL) mice, which instead remain in CP CML. Leukemic stem cells (LSCs) from miR-142-/-BCR-ABL mice recapitulate the BC phenotype in congenic recipients, supporting LSC transformation by miR-142 deficit. State-transition and mutual information analyses of "bulk" and single cell RNA-seq data, metabolomic profiling and functional metabolic assays identify enhanced fatty acid ß-oxidation, oxidative phosphorylation and mitochondrial fusion in LSCs as key steps in miR-142-driven BC evolution. A synthetic CpG-miR-142 mimic oligodeoxynucleotide rescues the BC phenotype in miR-142-/-BCR-ABL mice and patient-derived xenografts.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Mieloide de Fase Crónica , Leucemia Mieloide , MicroARNs , Animales , Humanos , Ratones , Crisis Blástica , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA