Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542437

RESUMEN

NADPH oxidase enzymes (NOX) are involved in all stages of carcinogenesis, but their expression levels and prognostic value in breast cancer (BC) remain unclear. Thus, we aimed to assess the expression and prognostic value of NOX enzymes in BC samples using online databases. For this, mRNA expression from 290 normal breast tissue samples and 1904 BC samples obtained from studies on cBioPortal, Kaplan-Meier Plotter, and The Human Protein Atlas were analyzed. We found higher levels of NOX2, NOX4, and Dual oxidase 1 (DUOX1) in normal breast tissue. NOX1, NOX2, and NOX4 exhibited higher expression in BC, except for the basal subtype, where NOX4 expression was lower. DUOX1 mRNA levels were lower in all BC subtypes. NOX2, NOX4, and NOX5 mRNA levels increased with tumor progression stages, while NOX1 and DUOX1 expression decreased in more advanced stages. Moreover, patients with low expression of NOX1, NOX4, and DUOX1 had lower survival rates than those with high expression of these enzymes. In conclusion, our data suggest an overexpression of NOX enzymes in breast cancer, with certain isoforms showing a positive correlation with tumor progression.


Asunto(s)
Neoplasias de la Mama , NADPH Oxidasas , Humanos , Femenino , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Oxidasas Duales/genética , Neoplasias de la Mama/genética , Pronóstico , Especies Reactivas de Oxígeno/metabolismo , ARN Mensajero/genética , Expresión Génica , NADPH Oxidasa 4/genética , NADPH Oxidasa 1/genética
2.
Front Mol Biosci ; 8: 663301, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026836

RESUMEN

Leprosy, caused by Mycobacterium leprae (M. leprae), is treated with a multidrug regimen comprising Dapsone, Rifampicin, and Clofazimine. These drugs exhibit bacteriostatic, bactericidal and anti-inflammatory properties, respectively, and control the dissemination of infection in the host. However, the current treatment is not cost-effective, does not favor patient compliance due to its long duration (12 months) and does not protect against the incumbent nerve damage, which is a severe leprosy complication. The chronic infectious peripheral neuropathy associated with the disease is primarily due to the bacterial components infiltrating the Schwann cells that protect neuronal axons, thereby inducing a demyelinating phenotype. There is a need to discover novel/repurposed drugs that can act as short duration and effective alternatives to the existing treatment regimens, preventing nerve damage and consequent disability associated with the disease. Mycobacterium leprae is an obligate pathogen resulting in experimental intractability to cultivate the bacillus in vitro and limiting drug discovery efforts to repositioning screens in mouse footpad models. The dearth of knowledge related to structural proteomics of M. leprae, coupled with emerging antimicrobial resistance to all the three drugs in the multidrug therapy, poses a need for concerted novel drug discovery efforts. A comprehensive understanding of the proteomic landscape of M. leprae is indispensable to unravel druggable targets that are essential for bacterial survival and predilection of human neuronal Schwann cells. Of the 1,614 protein-coding genes in the genome of M. leprae, only 17 protein structures are available in the Protein Data Bank. In this review, we discussed efforts made to model the proteome of M. leprae using a suite of software for protein modeling that has been developed in the Blundell laboratory. Precise template selection by employing sequence-structure homology recognition software, multi-template modeling of the monomeric models and accurate quality assessment are the hallmarks of the modeling process. Tools that map interfaces and enable building of homo-oligomers are discussed in the context of interface stability. Other software is described to determine the druggable proteome by using information related to the chokepoint analysis of the metabolic pathways, gene essentiality, homology to human proteins, functional sites, druggable pockets and fragment hotspot maps.

3.
Comput Struct Biotechnol J ; 17: 378-389, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30962868

RESUMEN

In the cyclic guanosine monophosphate (cGMP) signaling pathway, phosphodiesterase 6 (PDE6) maintains a critical balance of the intracellular concentration of cGMP by catalyzing it to 5' guanosine monophosphate (5'-GMP). To gain insight into the mechanistic impacts of the PDE6 somatic mutations that are implicated in cancer and retinitis pigmentosa, we first defined the structure and organization of the human PDE6 heterodimer using computational comparative modelling. Each subunit of PDE6αß possesses three domains connected through long α-helices. The heterodimer model indicates that the two chains are likely related by a pseudo two-fold axis. The N-terminal region of each subunit is comprised of two allosteric cGMP-binding domains (Gaf-A & Gaf-B), oriented in the same way and interacting with the catalytic domain present at the C-terminal in a way that would allow the allosteric cGMP-binding domains to influence catalytic activity. Subsequently, we applied an integrated knowledge-driven in silico mutation analysis approach to understand the structural and functional implications of experimentally identified mutations that cause various cancers and retinitis pigmentosa, as well as computational saturation mutagenesis of the dimer interface and cGMP-binding residues of both Gaf-A, and the catalytic domains. We studied the impact of mutations on the stability of PDE6αß structure, subunit-interfaces and Gaf-cGMP interactions. Further, we discussed the changes in interatomic interactions of mutations that are destabilizing in Gaf-A (R93L, V141 M, F162 L), catalytic domain (D600N, F742 L, F776 L) and at the dimer interface (F426A, F248G, F424 N). This study establishes a possible link of change in PDE6αß structural stability to the experimentally observed disease phenotypes.

4.
J Comput Aided Mol Des ; 32(5): 591-605, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29564808

RESUMEN

Chagas disease remains a major health problem in South America, and throughout the world. The two drugs clinically available for its treatment have limited efficacy and cause serious adverse effects. Cruzain is an established therapeutic target of Trypanosoma cruzi, the protozoan that causes Chagas disease. Our group recently identified a competitive cruzain inhibitor (compound 1) with an IC50 = 15 µM that is also more synthetically accessible than the previously reported lead, compound 2. Prior studies, however, did not propose a binding mode for compound 1, hindering understanding of the structure-activity relationship and optimization. Here, the cruzain binding mode of compound 1 was investigated using docking, molecular dynamics (MD) simulations with ab initio derived parameters, ab initio calculations, and MM/PBSA. Two ligand protonation states and four binding poses were evaluated. A careful ligand parameterization method was employed to derive more physically meaningful parameters than those obtained by automated tools. The poses of unprotonated 1 were unstable in MD, showing large conformational changes and diffusing away from the binding site, whereas the protonated form showed higher stability and interaction with negatively charged residues Asp161 and Cys25. MM/PBSA also suggested that these two residues contribute favorably to binding of compound 1. By combining results from MD, ab initio calculations, and MM/PBSA, a binding mode of 1 is proposed. The results also provide insights for further optimization of 1, an interesting lead compound for the development of new cruzain inhibitors.


Asunto(s)
Inhibidores de Cisteína Proteinasa/química , Modelos Moleculares , Proteínas Protozoarias/antagonistas & inhibidores , Quinolinas/química , Cisteína Endopeptidasas , Diseño de Fármacos , Ligandos , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad , Termodinámica
5.
J Gen Virol ; 99(4): 536-548, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29469689

RESUMEN

Southeastern Brazil has been suffering a rapid expansion of a severe sylvatic yellow fever virus (YFV) outbreak since late 2016, which has reached one of the most populated zones in Brazil and South America, heretofore a yellow fever-free zone for more than 70 years. In the current study, we describe the complete genome of 12 YFV samples from mosquitoes, humans and non-human primates from the Brazilian 2017 epidemic. All of the YFV sequences belong to the modern lineage (sub-lineage 1E) of South American genotype I, having been circulating for several months prior to the December 2016 detection. Our data confirm that viral strains associated with the most severe YF epidemic in South America in the last 70 years display unique amino acid substitutions that are mainly located in highly conserved positions in non-structural proteins. Our data also corroborate that YFV has spread southward into Rio de Janeiro state following two main sylvatic dispersion routes that converged at the border of the great metropolitan area comprising nearly 12 million unvaccinated inhabitants. Our original results can help public health authorities to guide the surveillance, prophylaxis and control measures required to face such a severe epidemiological problem. Finally, it will also inspire other workers to further investigate the epidemiological and biological significance of the amino acid polymorphisms detected in the Brazilian 2017 YFV strains.


Asunto(s)
Fiebre Amarilla/virología , Virus de la Fiebre Amarilla/genética , Brasil/epidemiología , Brotes de Enfermedades , Genoma Viral , Genómica , Genotipo , Humanos , Modelos Moleculares , Filogenia , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Fiebre Amarilla/epidemiología , Virus de la Fiebre Amarilla/química , Virus de la Fiebre Amarilla/clasificación , Virus de la Fiebre Amarilla/aislamiento & purificación
7.
Braz. J. Pharm. Sci. (Online) ; 54(spe): e01002, 2018. graf
Artículo en Inglés | LILACS | ID: biblio-974426

RESUMEN

Few Zika virus (ZIKV) outbreaks had been reported since its first detection in 1947, until the recent epidemics occurred in South America (2014/2015) and expeditiously became a global public health emergency. This arbovirus reached 0.5-1.3 million cases of ZIKV infection in Brazil in 2015 and rapidly spread in new geographic areas such as the Americas. Despite the mild symptoms of the Zika fever, the major concern is related to the related severe neurological disorders, especially microcephaly in newborns. Advances in ZIKV drug discovery have been made recently and constitute promising approaches to ZIKV treatment. In this review, we summarize current computational drug discovery efforts and their applicability to discovery of anti-ZIKV drugs. Lastly, we present successful examples of the use of computational approaches to ZIKV drug discovery.


Asunto(s)
Diseño Asistido por Computadora/estadística & datos numéricos , Descubrimiento de Drogas/instrumentación , Virus Zika , Antivirales/farmacología , Triaje/métodos , Metodologías Computacionales , Flavivirus
8.
Mem. Inst. Oswaldo Cruz ; 112(4): 299-308, Apr. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-841780

RESUMEN

BACKGROUND Malaria persists as a major public health problem. Atovaquone is a drug that inhibits the respiratory chain of Plasmodium falciparum, but with serious limitations like known resistance, low bioavailability and high plasma protein binding. OBJECTIVES The aim of this work was to perform molecular modelling studies of 2-hydroxy-1,4-naphthoquinones analogues of atovaquone on the Qo site of P. falciparum cytochrome bc1 complex (Pfbc1) to suggest structural modifications that could improve their antimalarial activity. METHODS We have built the homology model of the cytochrome b (CYB) and Rieske iron-sulfur protein (ISP) subunits from Pfbc1 and performed the molecular docking of 41 2-hydroxy-1,4-naphthoquinones with known in vitro antimalarial activity and predicted to act on this target. FINDINGS Results suggest that large hydrophobic R2 substituents may be important for filling the deep hydrophobic Qo site pocket. Moreover, our analysis indicates that the H-donor 2-hydroxyl group may not be crucial for efficient binding and inhibition of Pfbc1 by these atovaquone analogues. The C1 carbonyl group (H-acceptor) is more frequently involved in the important hydrogen bonding interaction with His152 of the Rieske ISP subunit. MAIN CONCLUSIONS Additional interactions involving residues such as Ile258 and residues required for efficient catalysis (e.g., Glu261) could be explored in drug design to avoid development of drug resistance by the parasite.


Asunto(s)
Plasmodium falciparum/efectos de los fármacos , Complejo III de Transporte de Electrones/química , Antimaláricos/farmacología , Antimaláricos/química , Naftoquinonas/química , Análisis de Secuencia de Proteína
9.
Mem Inst Oswaldo Cruz ; 112(4): 299-308, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28327793

RESUMEN

BACKGROUND: Malaria persists as a major public health problem. Atovaquone is a drug that inhibits the respiratory chain of Plasmodium falciparum, but with serious limitations like known resistance, low bioavailability and high plasma protein binding. OBJECTIVES: The aim of this work was to perform molecular modelling studies of 2-hydroxy-1,4-naphthoquinones analogues of atovaquone on the Qo site of P. falciparum cytochrome bc1 complex (Pfbc1) to suggest structural modifications that could improve their antimalarial activity. METHODS: We have built the homology model of the cytochrome b (CYB) and Rieske iron-sulfur protein (ISP) subunits from Pfbc1 and performed the molecular docking of 41 2-hydroxy-1,4-naphthoquinones with known in vitro antimalarial activity and predicted to act on this target. FINDINGS: Results suggest that large hydrophobic R2 substituents may be important for filling the deep hydrophobic Qo site pocket. Moreover, our analysis indicates that the H-donor 2-hydroxyl group may not be crucial for efficient binding and inhibition of Pfbc1 by these atovaquone analogues. The C1 carbonyl group (H-acceptor) is more frequently involved in the important hydrogen bonding interaction with His152 of the Rieske ISP subunit. MAIN CONCLUSIONS: Additional interactions involving residues such as Ile258 and residues required for efficient catalysis (e.g., Glu261) could be explored in drug design to avoid development of drug resistance by the parasite.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Complejo III de Transporte de Electrones/química , Naftoquinonas/química , Naftoquinonas/farmacología , Plasmodium falciparum/efectos de los fármacos , Análisis de Secuencia de Proteína
10.
Bioorg Med Chem ; 24(8): 1608-18, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26964673

RESUMEN

Chagas disease is a tropical disease caused by the parasite Trypanosoma cruzi, which is endemic in Central and South America. Few treatments are available with effectiveness limited to the early (acute) stage of disease, significant toxicity and widespread drug resistance. In this work we report the outcome of a HTS-ready assay chemical library screen to identify novel, nontoxic, small-molecule inhibitors of T. cruzi. We have selected 50 compounds that possess hydrazone as a common group. The compounds were screened using recombinant T. cruzi (Tulahuen strain) expressing beta-galactosidase. A 3D quantitative structure-activity relationship (QSAR) analysis was performed using descriptors calculated from comparative molecular field analysis (CoMFA). Our findings show that of the fifty selected hydrazones, compounds LpQM-19, 28 and 31 displayed the highest activity against T. cruzi, leading to a selectivity index (SI) of 20-fold. The 3D-QSAR analysis indicates that a particular electrostatic arrangement, where electron-deficient atoms are aligned along the molecule main axis positively correlates with compound biological activity. These results provide new candidate molecules for the development of treatments against Chagas disease.


Asunto(s)
Hidrazonas/farmacología , Relación Estructura-Actividad Cuantitativa , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , Hidrazonas/síntesis química , Hidrazonas/química , Ratones , Modelos Moleculares , Estructura Molecular , Células 3T3 NIH , Pruebas de Sensibilidad Parasitaria , Tripanocidas/síntesis química , Tripanocidas/química
11.
Proteins ; 79(9): 2684-92, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21769939

RESUMEN

Endostatin is a potent antiangiogenic protein derived from the noncollagenous domain 1 (NC1) of collagen XVIII. The mechanism by which endostatin exerts its antiangiogenic effect is still incompletely understood. It has been shown that the 27 amino acid N-terminal fragment of murine endostatin has antitumor, antimigration, and antipermeability activities comparable to the full soluble protein. To understand how this peptide can exert such elaborate function, we performed structural analysis using molecular dynamics to evaluate the behavior of this fragment in aqueous environment. Here, we show that the N-terminal peptide of murine endostatin is able to assume a well-defined structure, folding into a zinc-dependent ß-hairpin conformation. Analyzing the folding mechanism, we were able to understand why the N-terminal peptide of human endostatin with the same length failed to acquire a stable conformation. Conversely, we were able to predict the successful folding of the R4Q mutant and of a shorter form of the human peptide with 25 residues. Finally, we show that the ß-hairpin conformation assumed by the zinc-bound peptide of murine endostatin has a high structural similarity with fragments of another family of angiogenesis inhibitors: the integrin-binding portion of the NC1 domain of collagen IV. Indeed, our docking simulations show that arresten, canstatin, and the endostatin peptide bind to the same spot of αVß3 integrin, suggesting similar interactions via a common binding site on this receptor.


Asunto(s)
Endostatinas/química , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/metabolismo , Animales , Sitios de Unión , Colágeno Tipo IV , Colágeno Tipo XVIII/química , Colágeno Tipo XVIII/metabolismo , Endostatinas/metabolismo , Humanos , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Ratones , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...