Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37189786

RESUMEN

Estetrol (E4), a natural estrogen produced by the human fetal liver, is actively studied for menopause and breast cancer treatment. It has low side effects and preferential estrogen receptor alpha (ERα) affinity. There are no data about its effects on endometriosis, a common gynecological disease affecting 6-10% of cycling women, generating painful pelvic lesions and infertility. Current combined hormone treatment (progestins and estrogens) is safe and efficient; nevertheless, one-third of patients develop progesterone (P4) resistance and recurrence by reducing P4 receptors (PRs) levels. We aimed to compare E4 and 17ß-estradiol (E2) effects using two human endometriotic cell lines (epithelial 11Z and stromal Hs832 cells) and primary cultures from endometriotic patients. We evaluated cell growth (MTS), migration (wound assay), hormone receptors levels (Western blot), and P4 response by PCR array. Compared to E2, E4 did not affect cell growth or migration but increased estrogen receptor alpha (ERα) and PRs, and reduced ERß. Finally, the incubation with E4 improved the P4 gene response. In conclusion, E4 increased PRs levels and genetic response without inducing cell growth or migration. These results suggest that E4 might be useful for endometriosis treatment avoiding P4 resistance; however, evaluating its response in more complex models is required.

2.
Cancers (Basel) ; 14(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36230673

RESUMEN

The survival of patients with solid tumors, such as prostate cancer (PCa), has been limited and fleeting with anti-angiogenic therapies. It was previously thought that the mechanism by which the vasculature regulates tumor growth was driven by a passive movement of oxygen and nutrients to the tumor tissue. However, previous evidence suggests that endothelial cells have an alternative role in changing the behavior of tumor cells and contributing to cancer progression. Determining the impact of molecular signals/growth factors released by endothelial cells (ECs) on established PCa cell lines in vitro and in vivo could help to explain the mechanism by which ECs regulate tumor growth. Using cell-conditioned media collected from HUVEC (HUVEC-CM), our data show the stimulated proliferation of all the PCa cell lines tested. However, in more aggressive PCa cell lines, HUVEC-CM selectively promoted migration and invasion in vitro and in vivo. Using a PCa-cell-line-derived xenograft model co-injected with HUVEC or preincubated with HUVEC-CM, our results are consistent with the in vitro data, showing enhanced tumor growth, increased tumor microvasculature and promoted metastasis. Gene set enrichment analyses from RNA-Seq gene expression profiles showed that HUVEC-CM induced a differential effect on gene expression when comparing low versus highly aggressive PCa cell lines, demonstrating epigenetic and migratory pathway enrichments in highly aggressive PCa cells. In summary, paracrine stimulation by HUVEC increased PCa cell proliferation and tumor growth and selectively promoted migration and metastatic potential in more aggressive PCa cell lines.

3.
Cancer Res ; 81(11): 2824-2832, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33762358

RESUMEN

Clinical localization of primary tumors and sites of metastasis by PET is based on the enhanced cellular uptake of 2-deoxy-2-[18F]-fluoro-D-glucose (FDG). In prostate cancer, however, PET-FDG imaging has shown limited clinical applicability, suggesting that prostate cancer cells may utilize hexoses other than glucose, such as fructose, as the preferred energy source. Our previous studies suggested that prostate cancer cells overexpress fructose transporters, but not glucose transporters, compared with benign cells. Here, we focused on validating the functional expression of fructose transporters and determining whether fructose can modulate the biology of prostate cancer cells in vitro and in vivo. Fructose transporters, Glut5 and Glut9, were significantly upregulated in clinical specimens of prostate cancer when compared with their benign counterparts. Fructose levels in the serum of patients with prostate cancer were significantly higher than healthy subjects. Functional expression of fructose transporters was confirmed in prostate cancer cell lines. A detailed kinetic characterization indicated that Glut5 represents the main functional contributor in mediating fructose transport in prostate cancer cells. Fructose stimulated proliferation and invasion of prostate cancer cells in vitro. In addition, dietary fructose increased the growth of prostate cancer cell line-derived xenograft tumors and promoted prostate cancer cell proliferation in patient-derived xenografts. Gene set enrichment analysis confirmed that fructose stimulation enriched for proliferation-related pathways in prostate cancer cells. These results demonstrate that fructose promotes prostate cancer cell growth and aggressiveness in vitro and in vivo and may represent an alternative energy source for prostate cancer cells. SIGNIFICANCE: This study identifies increased expression of fructose transporters in prostate cancer and demonstrates a role for fructose as a key metabolic substrate supporting prostate cancer cells, revealing potential therapeutic targets and biomarkers.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Dieta/efectos adversos , Fructosa/farmacología , Regulación Neoplásica de la Expresión Génica , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 5/metabolismo , Neoplasias de la Próstata/patología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Ciclo Celular , Movimiento Celular , Proliferación Celular , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Transportador de Glucosa de Tipo 5/genética , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias de la Próstata/inducido químicamente , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Prostate Cancer Prostatic Dis ; 22(1): 49-58, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30104655

RESUMEN

Activation of glucose transporter-1 (Glut-1) gene expression is a molecular feature of cancer cells that increases glucose uptake and metabolism. Increased glucose uptake is the basis for the clinical localization of primary tumors using positron emission tomography (PET) and 2-deoxy-2-[18F]-fluoro-D-glucose (FDG) as a radiotracer. However, previous studies have demonstrated that a considerable number of cancers, which include prostate cancer (CaP), express low to undetectable levels of Glut-1 and that FDG-PET has limited clinical applicability in CaP. This observation could be explained by a low metabolic activity of CaP cells that may be overcome using different hexoses, such as fructose, as the preferred energy source. However, these hypotheses have not been examined critically in CaP. This review article summarizes what is currently known about transport and metabolism of hexoses, and more specifically fructose, in CaP and provides experimental evidences indicating that CaP cells may have increased capacity to transport and metabolize fructose in vitro and in vivo. Moreover, this review highlights recent findings that allow better understanding of how metabolism of fructose may regulate cancer cell proliferation and how fructose uptake and metabolism, through the de novo lipogenesis pathway, may provide new opportunities for CaP early diagnosis, staging, and treatment.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Fructosa/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Transporte Biológico , Biomarcadores , Metabolismo Energético , Expresión Génica , Humanos , Masculino , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia
5.
Angiogenesis ; 20(1): 25-38, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27679502

RESUMEN

BACKGROUND: Sex-related differences in the role of androgen have been reported in cardiovascular diseases and angiogenesis. Moreover, androgen receptor (AR) has been causally involved in the homeostasis of human prostate endothelial cells. However, levels of expression, functionality and biological role of AR in male- and female-derived human endothelial cells (ECs) remain poorly characterized. The objectives of this work were (1) to characterize the functional expression of AR in male- and female-derived human umbilical vein endothelial cell (HUVEC), and (2) to specifically analyze the biological effects of DHT, and the role of AR on these effects, in male-derived HUVECs (mHUVECs). RESULTS: Immunohistochemical analyses of tissue microarrays from benign human tissues confirmed expression of AR in ECs from several androgen-regulated and non-androgen-regulated human organs. Functional expression of AR was validated in vitro in male- and female-derived HUVECs using quantitative RT-PCR, immunoblotting and AR-mediated transcriptional activity assays. Our results indicated that functional expression of AR in male- and female-derived HUVECs was heterogeneous, but not sex dependent. In parallel, we analyzed in depth the biological effects of DHT, and the role of AR on these effects, on proliferation, survival and tube formation capacity in mHUVECs. Our results indicated that DHT did not affect mHUVEC survival; however, DHT stimulated mHUVEC proliferation and suppressed mHUVEC tube formation capacity. While the effect of DHT on proliferation was mediated through AR, the effect of DHT on tube formation did not depend on the presence of a functional AR, but rather depended on the ability of mHUVECs to further metabolize DHT. CONCLUSIONS: (1) Heterogeneous expression of AR in male- and female-derived HUVEC could define the presence of functionally different subpopulations of ECs that may be affected differentially by androgens, which could explain, at least in part, the pleiotropic effects of androgen on vascular biology, and (2) DHT, and metabolites of DHT, generally thought to represent progressively more hydrophilic products along the path to elimination, may have differential roles in modulating the biology of human ECs through AR-dependent and AR-independent mechanisms, respectively.


Asunto(s)
Andrógenos/farmacología , Homeostasis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Receptores Androgénicos/metabolismo , Androstanoles/metabolismo , Androsterona/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dihidrotestosterona/química , Dihidrotestosterona/farmacología , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Masculino , Modelos Biológicos , Neovascularización Fisiológica/efectos de los fármacos , Especificidad de Órganos/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Androgénicos/genética
6.
PLoS One ; 10(5): e0125834, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25954972

RESUMEN

Reprimo (RPRM), a downstream effector of p53-induced cell cycle arrest at G2/M, has been proposed as a putative tumor suppressor gene (TSG) and as a potential biomarker for non-invasive detection of gastric cancer (GC). The aim of this study was to evaluate the epigenetic silencing of RPRM gene by promoter methylation and its tumor suppressor function in GC cell lines. Furthermore, clinical significance of RPRM protein product and its association with p53/p73 tumor suppressor protein family was explored. Epigenetic silencing of RPRM gene by promoter methylation was evaluated in four GC cell lines. Protein expression of RPRM was evaluated in 20 tumor and non-tumor matched cases. The clinical significance of RPRM association with p53/p73 tumor suppressor protein family was assessed in 114 GC cases. Tumor suppressor function was examined through functional assays. RPRM gene expression was negatively correlated with promoter methylation (Spearman rank r = -1; p = 0.042). RPRM overexpression inhibited colony formation and anchorage-independent growth. In clinical samples, RPRM gene protein expression was detected in 75% (15/20) of non-tumor adjacent mucosa, but only in 25% (5/20) of gastric tumor tissues (p = 0.001). Clinicopathological correlations of loss of RPRM expression were significantly associated with invasive stage of GC (stage I to II-IV, p = 0.02) and a positive association between RPRM and p73 gene protein product expression was found (p<0.0001 and kappa value = 0.363). In conclusion, epigenetic silencing of RPRM gene by promoter methylation is associated with loss of RPRM expression. Functional assays suggest that RPRM behaves as a TSG. Loss of expression of RPRM gene protein product is associated with the invasive stage of GC. Positive association between RPRM and p73 expression suggest that other members of the p53 gene family may participate in the regulation of RPRM expression.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/metabolismo , Progresión de la Enfermedad , Glicoproteínas/genética , Proteínas Nucleares/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Metilación de ADN/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glicoproteínas/metabolismo , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Regiones Promotoras Genéticas , Proteína Tumoral p73 , Ensayo de Tumor de Célula Madre
7.
J Endocrinol ; 224(3): R131-7, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25563353

RESUMEN

Androgen receptor (AR) is a ligand-inducible transcription factor, and a member of the steroid-thyroid-retinoid receptor superfamily, that mediates the biological effects of androgens in a wide range of physiological and pathological processes. AR expression was identified in vascular cells nearly 20 years ago, and recent research has shown that AR mediates a variety of actions of androgens in endothelial and vascular smooth muscle cells. In this mini-review, we review evidence indicating the importance of AR in human endothelial cell (HUVEC) homeostatic and pathogenic processes. Although a role for AR in the modulation of HUVEC biology is evident, the molecular mechanisms by which AR regulates HUVEC homeostasis and disease processes are not fully understood. Understanding these mechanisms could provide critical insights into the processes of pathogenesis of diseases ranging from cardiovascular disease to cancer that are major causes of human morbidity and mortality.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Células Progenitoras Endoteliales/fisiología , Humanos , Neoplasias/irrigación sanguínea , Neoplasias/genética , Neovascularización Patológica/genética , Neovascularización Fisiológica/genética
8.
J Cancer Res Clin Oncol ; 140(5): 783-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24627192

RESUMEN

PURPOSE: To study the association between the polymorphisms, rs1859962 and rs4430796, from the chromosomes 17q24 and 17q12, respectively, with the risk of prostate cancer (PCa) and its clinical characteristics in a Hispanic (Chilean) population. METHODS: This study included 33 controls and 167 patients diagnosed with PCa. The polymorphisms, rs1859962 and rs4430796, were analyzed on blood specimens using quantitative PCR. The genetic analysis of the qPCR data was performed using the SNPStats program. A comparison between the clinical characteristics of the prostate cancers from the patients and the presence of the different polymorphism genotypes detected in blood specimens obtained from these patients was performed using the IBM SPSS v20.0 software. RESULTS: We observed no association of the SNPs and the risk of developing PCa (OR 0.84, 95 % CI 0.30-2.38, p = 1.0 to rs1859962 and OR 1.94, 95 % CI 0.57-6.52, p = 0.28 to rs4430796), both sporadic and hereditary. However, patients carrying the genotype G/G from the polymorphism rs4430796 had significantly higher PSA levels than patients carrying the other genotypes (15.05 ng/ml to G/G, 10 and 8.11 ng/ml to genotypes A/G y A/A, respectively, p = 0.01). Furthermore, patients with the genotype G/G of rs4430796 had higher tumor volume than other genotypes (9.45 cc to G/G and 5.22 cc to A/G + A/A, p = 0.04). CONCLUSION: The polymorphism rs4430796 of the chromosome 17q12 appears to be a biomarker for cancer aggressiveness, increased PSA and tumor volume of PCa.


Asunto(s)
Biomarcadores de Tumor/genética , Cromosomas Humanos Par 17/genética , Estudios de Asociación Genética , Polimorfismo de Nucleótido Simple/genética , Neoplasias de la Próstata/genética , Anciano , Alelos , Predisposición Genética a la Enfermedad , Hispánicos o Latinos , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias de la Próstata/patología , Factores de Riesgo
9.
J Cell Mol Med ; 18(1): 125-33, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24224612

RESUMEN

To study the association between the polymorphisms Arg462Gln and Asp541Glu from the RNASEL gene (1q25), and the polymorphisms rs620861, rs1447295, rs6983267, rs7837328 from the chromosome 8q24 with the risk of presenting prostate cancer (PCa) and its clinical characteristics in a Hispanic (Chilean) population. The study was performed on 21 control patients and 83 patients diagnosed with PCa. Polymorphisms were analysed from blood samples through real-time PCR by using TaqMan probes, and the genetic analysis was performed with the SNPStats program. Also, a comparison was performed between clinical characteristics of PCa and the presence of the different polymorphism genotypes by using the Minitab software. There was a significant association between the genotype G/G from the polymorphism rs6983267 with an overall increased risk of PCa, in patients both with or without family history of PCa (OR = 4.47, 95% CI = 1.05-18.94, P = 0.034 and OR = 3.57, 95% CI = 0.96-13.35, P = 0.037, respectively). Regarding clinical parameters, patients carrying the genotype C/C from the polymorphism Asp541Glu had significantly higher prostate-specific antigen (PSA) levels than patients carrying the other genotypes (P = 0.034). Moreover, patients with the genotype G/G of rs6983267 had higher PSA levels (P = 0.024). The polymorphism rs6983267 from region 3 of the chromosome 8q24 appears to be a prominent risk factor for PCa and a biomarker for cancer aggressiveness in the group of patients who presented higher levels of PSA at the time of diagnosis.


Asunto(s)
Cromosomas Humanos Par 8/genética , Endorribonucleasas/genética , Neoplasias de la Próstata/genética , Anciano , Estudios de Casos y Controles , Chile , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/patología , Riesgo , Análisis de Secuencia de ADN , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA