Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
BMC Biol ; 22(1): 77, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589878

BACKGROUND: Ten percent of the female population suffers from congenital abnormalities of the vagina, uterus, or oviducts, with severe consequences for reproductive and psychological health. Yet, the underlying causes of most of these malformations remain largely unknown. ADGRA3 (GPR125) is involved in WNT signaling and planar cell polarity, mechanisms vital to female reproductive tract development. Although ADGRA3 is a well-established spermatogonial stem cell marker, its role within the female urogenital system remains unclear. RESULTS: In this study, we found Adgra3 to be expressed throughout the murine female urogenital system, with higher expression pre-puberty than after sexual maturation. We generated a global Adgra3-/- mouse line and observed imperforate vagina in 44% of Adgra3-/- females, resulting in distension of the reproductive tract and infertility. Ovarian morphology, plasma estradiol, ovarian Cyp19a1, and vaginal estrogen receptor α (Esr1) expression were unaffected. However, compared to controls, a significantly lower bone mineral density was found in Adgra3-/- mice. Whereas vaginal opening in mice is an estrogen-dependent process, 17ß-estradiol treatment failed to induce vaginal canalization in Adgra3-/- mice. Furthermore, a marked reduction in vaginal and ovarian progesterone receptor expression was observed concomitant with an upregulation of apoptotic regulators Bcl2, Bid, and Bmf in adult Adgra3-/- females with a closed vagina. CONCLUSIONS: Our collective results shed new insights into the complex mechanisms by which the adhesion receptor ADGRA3 regulates distal vaginal tissue remodeling during vaginal canalization via altered sex hormone responsiveness and balance in apoptotic regulators. This highlights the potential of ADGRA3 as a target in diagnostic screening and/or therapy for obstructive vaginal malformations in humans.


Estrogens , Vagina , Humans , Animals , Mice , Female , Incidence , Vagina/abnormalities , Estrogens/metabolism , Uterus/metabolism , Estradiol/pharmacology
2.
Acta Physiol (Oxf) ; 238(1): e13947, 2023 05.
Article En | MEDLINE | ID: mdl-36755506

AIM: Postprandial secretion of the appetite-inhibiting hormones, glucagon-like peptide-1 (GLP-1), and peptide YY are reduced with obesity. It is unclear if the reduced secretion persists following weight loss (WL), if other appetite-inhibiting hormones are also reduced, and if so whether reduced secretion results from intrinsic changes in the gut. METHODS: To address whether WL may restore secretion of GLP-1 and other appetite-inhibiting hormones, we performed a gut perfusion study of the small intestine in diet-induced obese (DIO) rats after WL. A 20% weight loss (means ± SEM (g): 916 ± 53 vs. 703 ± 35, p < 0.01, n = 7) was induced by calorie restriction, and maintained stable for ≥7 days prior to gut perfusion to allow for complete renewal of enteroendocrine cells. Age-matched DIO rats were used as comparator. Several gut hormones were analyzed from the venous effluent, and gene expression was performed on gut tissue along the entire length of the intestine. RESULTS: Secretion of cholecystokinin, gastrin, glucose-dependent insulinotropic peptide, GLP-1, neurotensin, and somatostatin was not affected by WL during basal conditions (p ≥ 0.25) or in response to macronutrients and bile acids (p ≥ 0.14). Glucose absorption was indistinguishable following WL. The expression of genes encoding the studied peptides, macronutrient transporters (glucose, fructose, and di-/tripeptides) and bile acid receptors did also not differ between DIO and WL groups. CONCLUSIONS: These data suggest that the attenuated postprandial responses of GLP-1, as well as reduced responses of other appetite-inhibiting gut hormones, in people living with obesity may persist after weight loss and may contribute to their susceptibility for weight regain.


Appetite , Caloric Restriction , Rats , Animals , Glucagon-Like Peptide 1/metabolism , Weight Loss , Obesity/metabolism , Intestine, Small , Glucose
3.
Commun Biol ; 5(1): 946, 2022 09 10.
Article En | MEDLINE | ID: mdl-36088386

Most metabolic studies on mice are performed at room temperature, although under these conditions mice, unlike humans, spend considerable energy to maintain core temperature. Here, we characterize the impact of housing temperature on energy expenditure (EE), energy homeostasis and plasma concentrations of appetite- and glucoregulatory hormones in normal-weight and diet-induced obese (DIO) C57BL/6J mice fed chow or 45% high-fat-diet, respectively. Mice were housed for 33 days at 22, 25, 27.5, and 30 °C in an indirect-calorimetry-system. We show that energy expenditure increases linearly from 30 °C towards 22 °C and is ~30% higher at 22 °C in both mouse models. In normal-weight mice, food intake counter-balances EE. In contrast, DIO mice do not reduce food intake when EE is lowered. By end of study, mice at 30 °C, therefore, had higher body weight, fat mass and plasma glycerol and triglycerides than mice at 22 °C. Dysregulated counterbalancing in DIO mice may result from increased pleasure-based eating.


Energy Intake , Housing , Animals , Body Weight , Diet, High-Fat/adverse effects , Energy Metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/etiology , Obesity/metabolism , Temperature
4.
Int J Mol Sci ; 23(6)2022 Mar 17.
Article En | MEDLINE | ID: mdl-35328681

Restoring the control of food intake is the key to obesity management and prevention. The arcuate nucleus (ARC) of the hypothalamus is extensively being studied as a potential anti-obesity target. Animal studies showed that neuropeptide FF (NPFF) reduces food intake by its action in neuropeptide Y (NPY) neurons of the hypothalamic ARC, but the detailed mode of action observed in human neurons is missing, due to the lack of a human-neuron-based model for pharmacology testing. Here, we validated and utilized a human-neural-stem-cell-based (hNSC) model of ARC to test the effects of NPFF on cellular pathways and neuronal activity. We found that in the human neurons, decreased cAMP levels by NPFF resulted in a reduced rate of cytoplasmic calcium oscillations, indicating an inhibition of ARC NPY neurons. This suggests the therapeutic potential of NPFFR2 in obesity. In addition, we demonstrate the use of human-stem-cell-derived neurons in pharmacological applications and the potential of this model to address functional aspects of human hypothalamic neurons.


Neuropeptide Y , Oligopeptides , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Humans , Neurons/metabolism , Neuropeptide Y/metabolism , Neuropeptide Y/pharmacology , Obesity/metabolism , Oligopeptides/pharmacology
5.
Metabolites ; 12(1)2022 Jan 05.
Article En | MEDLINE | ID: mdl-35050161

Obesity is caused by prolonged energy surplus. Current anti-obesity medications are mostly centralized around the energy input part of the energy balance equation by increasing satiety and reducing appetite. Our gastrointestinal tract is a key organ for regulation of food intake and supplies a tremendous number of circulating signals that modulate the activity of appetite-regulating areas of the brain by either direct interaction or through the vagus nerve. Intestinally derived messengers are manifold and include absorbed nutrients, microbial metabolites, gut hormones and other enterokines, collectively comprising a fine-tuned signalling system to the brain. After a meal, nutrients directly interact with appetite-inhibiting areas of the brain and induce satiety. However, overall feeding behaviour also depends on secretion of gut hormones produced by highly specialized and sensitive enteroendocrine cells. Moreover, circulating microbial metabolites and their interactions with enteroendocrine cells further contribute to the regulation of feeding patterns. Current therapies exploiting the appetite-regulating properties of the gut are based on chemically modified versions of the gut hormone, glucagon-like peptide-1 (GLP-1) or on inhibitors of the primary GLP-1 inactivating enzyme, dipeptidyl peptidase-4 (DPP-4). The effectiveness of these approaches shows that that the gut is a promising target for therapeutic interventions to achieve significant weigh loss. We believe that increasing understanding of the functionality of the intestinal epithelium and new delivery systems will help develop selective and safe gut-based therapeutic strategies for improved obesity treatment in the future. Here, we provide an overview of the major homeostatic appetite-regulating signals generated by the intestinal epithelial cells and how these signals may be harnessed to treat obesity by pharmacological means.

6.
Pharmacol Res ; 176: 106058, 2022 02.
Article En | MEDLINE | ID: mdl-34995796

The intestinal hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) are key regulators of postprandial bone turnover in humans. We hypothesized that GIP and GLP-2 co-administration would provide stronger effect on bone turnover than administration of the hormones separately, and tested this using subcutaneous injections of GIP and GLP-2 alone or in combination in humans. Guided by these findings, we designed series of GIPR-GLP-2R co-agonists as template for new osteoporosis treatment. The clinical experiment was a randomized cross-over design including 10 healthy men administered subcutaneous injections of GIP and GLP-2 alone or in combination. The GIPR-GLP-2R co-agonists were characterized in terms of binding and activation profiles on human and rodent GIP and GLP-2 receptors, and their pharmacokinetic (PK) profiles were improved by dipeptidyl peptidase-4 protection and site-directed lipidation. Co-administration of GIP and GLP-2 in humans resulted in an additive reduction in bone resorption superior to each hormone individually. The GIPR-GLP-2R co-agonists, designed by combining regions of importance for cognate receptor activation, obtained similar efficacies as the two native hormones and nanomolar potencies on both human receptors. The PK-improved co-agonists maintained receptor activity along with their prolonged half-lives. Finally, we found that the GIPR-GLP-2R co-agonists optimized toward the human receptors for bone remodeling are not feasible for use in rodent models. The successful development of potent and efficacious GIPR-GLP-2R co-agonists, combined with the improved effect on bone metabolism in humans by co-administration, support these co-agonists as a future osteoporosis treatment.


Bone Remodeling/drug effects , Gastric Inhibitory Polypeptide/pharmacology , Glucagon-Like Peptide 2/pharmacology , Glucagon-Like Peptide-2 Receptor/agonists , Receptors, Gastrointestinal Hormone/agonists , Adult , Animals , COS Cells , Chlorocebus aethiops , Cross-Over Studies , Female , Gastric Inhibitory Polypeptide/blood , Gastric Inhibitory Polypeptide/pharmacokinetics , Glucagon-Like Peptide 2/blood , Glucagon-Like Peptide 2/pharmacokinetics , Glucagon-Like Peptide-2 Receptor/genetics , Humans , Male , Mice, Inbred C57BL , Osteoporosis/drug therapy , Receptors, Gastrointestinal Hormone/genetics , Single-Blind Method , Young Adult
7.
Mol Metab ; 47: 101174, 2021 05.
Article En | MEDLINE | ID: mdl-33549847

OBJECTIVE: The goal of this study was to investigate the importance of central hormone-sensitive lipase (HSL) expression in the regulation of food intake and body weight in mice to clarify whether intracellular lipolysis in the mammalian hypothalamus plays a role in regulating appetite. METHODS: Using pharmacological and genetic approaches, we investigated the role of HSL in the rodent brain in the regulation of feeding and energy homeostasis under basal conditions during acute stress and high-fat diet feeding. RESULTS: We found that HSL, a key enzyme in the catabolism of cellular lipid stores, is expressed in the appetite-regulating centers in the hypothalamus and is activated by acute stress through a mechanism similar to that observed in adipose tissue and skeletal muscle. Inhibition of HSL in rodent models by a synthetic ligand, global knockout, or brain-specific deletion of HSL prevents a decrease in food intake normally seen in response to acute stress and is associated with the increased expression of orexigenic peptides neuropeptide Y (NPY) and agouti-related peptide (AgRP). Increased food intake can be reversed by adeno-associated virus-mediated reintroduction of HSL in neurons of the mediobasal hypothalamus. Importantly, metabolic stress induced by a high-fat diet also enhances the hyperphagic phenotype of HSL-deficient mice. Specific deletion of HSL in the ventromedial hypothalamic nucleus (VMH) or AgRP neurons reveals that HSL in the VMH plays a role in both acute stress-induced food intake and high-fat diet-induced obesity. CONCLUSIONS: Our results indicate that HSL activity in the mediobasal hypothalamus is involved in the acute reduction in food intake during the acute stress response and sensing of a high-fat diet.


Appetite/physiology , Homeostasis , Hypothalamus/metabolism , Sterol Esterase/metabolism , Agouti-Related Protein/metabolism , Animals , Body Weight , Diet, High-Fat/adverse effects , Eating , Energy Metabolism , Female , Hyperphagia/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Neuropeptide Y/metabolism , Obesity/metabolism , RNA Splicing Factors , Sterol Esterase/genetics , Stress, Physiological/genetics , Transcriptome
8.
Neuroendocrinology ; 111(12): 1201-1218, 2021.
Article En | MEDLINE | ID: mdl-33333517

INTRODUCTION: Food intake varies during the ovarian hormone/estrous cycle in humans and rodents, an effect mediated mainly by estradiol. A potential mediator of the central anorectic effects of estradiol is the neuropeptide relaxin-3 (RLN3) synthetized in the nucleus incertus (NI) and acting via the relaxin family peptide-3 receptor (RXFP3). METHODS: We investigated the relationship between RLN3/RXFP3 signaling and feeding behavior across the female rat estrous cycle. We used in situ hybridization to investigate expression patterns of Rln3 mRNA in NI and Rxfp3 mRNA in the hypothalamic paraventricular nucleus (PVN), lateral hypothalamic area (LHA), medial preoptic area (MPA), and bed nucleus of the stria terminalis (BNST), across the estrous cycle. We identified expression of estrogen receptors (ERs) in the NI using droplet digital PCR and assessed the electrophysiological responsiveness of NI neurons to estradiol in brain slices. RESULTS: Rln3 mRNA reached the lowest levels in the NI pars compacta during proestrus. Rxfp3 mRNA levels varied across the estrous cycle in a region-specific manner, with changes observed in the perifornical LHA, magnocellular PVN, dorsal BNST, and MPA, but not in the parvocellular PVN or lateral LHA. G protein-coupled estrogen receptor 1 (Gper1) mRNA was the most abundant ER transcript in the NI. Estradiol inhibited 33% of type 1 NI neurons, including RLN3-positive cells. CONCLUSION: These findings demonstrate that the RLN3/RXFP3 system is modulated by the estrous cycle, and although further studies are required to better elucidate the cellular and molecular mechanisms of estradiol signaling, current results implicate the involvement of the RLN3/RXFP3 system in food intake fluctuations observed across the estrous cycle in female rats.


Estradiol/metabolism , Estrous Cycle/metabolism , Hypothalamic Area, Lateral/metabolism , Nerve Tissue Proteins/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Preoptic Area/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/metabolism , Relaxin/metabolism , Septal Nuclei/metabolism , Animals , Female , RNA, Messenger/metabolism , Rats
9.
Front Cell Neurosci ; 14: 108, 2020.
Article En | MEDLINE | ID: mdl-32431599

The choroid plexus (CP) plays a major role in controlling the entry of substances and immune cells into the brain as it forms the blood-cerebrospinal fluid barrier (BCSFB) in the brain ventricles. Dysregulated immune cell trafficking through the epithelial cell (EC) layer of CP is central for the pathogenesis of infectious diseases in the brain and many neurodegenerative disorders. In vitro studies elucidating the function of the CP have so far been limited to the monolayer culture of CP ECs. To mimic immune cell migration across the CP barrier, a three-dimensional model would be advantageous. Here, we present an in vitro platform for studies of the immune cell trafficking based on CP explants/organoids. The explants were generated from fragments of mouse CPs in Matrigel, where the cells formed luminal spaces and could be maintained in culture for at least 8 weeks. We demonstrate expression of the major CP markers in the explants, including transthyretin and aquaporin 1 as well as ZO1 and ICAM-1, indicating a capacity for secretion of cerebrospinal fluid (CSF) and presence of tight junctions. CP explants displayed CP-like cell polarization and formed an intact EC barrier. We also show that the expression of transthyretin, transferrin, occludin and other genes associated with various functions of CP was maintained in the explants at similar levels as in native CP. By using dendritic cells and neutrophils, we show that the migration activity of immune cells and their interactions with CP epithelium can be monitored by microscopy. Thereby, the three-dimensional CP explant model can be used to study the cellular and molecular mechanisms mediating immune cell migration through CP epithelium and other functions of choroid EC. We propose this platform can potentially be used in the search for therapeutic targets and intervention strategies to improve control of (drug) substances and (immune) cell entry into the central nervous system.

10.
Mol Metab ; 39: 101004, 2020 09.
Article En | MEDLINE | ID: mdl-32339772

OBJECTIVE: Binding of ghrelin to its receptor, growth hormone secretagogue receptor (GHSR), stimulates GH release, induces eating, and increases blood glucose. These processes may also be influenced by constitutive (ghrelin-independent) GHSR activity, as suggested by findings in short people with naturally occurring GHSR-A204E mutations and reduced food intake and blood glucose in rodents administered GHSR inverse agonists, both of which impair constitutive GHSR activity. In this study, we aimed to more fully determine the physiologic relevance of constitutive GHSR activity. METHODS: We generated mice with a GHSR mutation that replaces alanine at position 203 with glutamate (GHSR-A203E), which corresponds to the previously described human GHSR-A204E mutation, and used them to conduct ex vivo neuronal electrophysiology and in vivo metabolic assessments. We also measured signaling within COS-7 and HEK293T cells transfected with wild-type GHSR (GHSR-WT) or GHSR-A203E constructs. RESULTS: In COS-7 cells, GHSR-A203E resulted in lower baseline IP3 accumulation than GHSR-WT; ghrelin-induced IP3 accumulation was observed in both constructs. In HEK293T cells co-transfected with voltage-gated CaV2.2 calcium channel complex, GHSR-A203E had no effect on basal CaV2.2 current density while GHSR-WT did; both GHSR-A203E and GHSR-WT inhibited CaV2.2 current in the presence of ghrelin. In cultured hypothalamic neurons from GHSR-A203E and GHSR-deficient mice, native calcium currents were greater than those in neurons from wild-type mice; ghrelin inhibited calcium currents in cultured hypothalamic neurons from both GHSR-A203E and wild-type mice. In brain slices, resting membrane potentials of arcuate NPY neurons from GHSR-A203E mice were hyperpolarized compared to those from wild-type mice; the same percentage of arcuate NPY neurons from GHSR-A203E and wild-type mice depolarized upon ghrelin exposure. The GHSR-A203E mutation did not significantly affect body weight, body length, or femur length in the first ∼6 months of life, yet these parameters were lower in GHSR-A203E mice after 1 year of age. During a 7-d 60% caloric restriction regimen, GHSR-A203E mice lacked the usual marked rise in plasma GH and demonstrated an exaggerated drop in blood glucose. Administered ghrelin also exhibited reduced orexigenic and GH secretagogue efficacies in GHSR-A203E mice. CONCLUSIONS: Our data suggest that the A203E mutation ablates constitutive GHSR activity and that constitutive GHSR activity contributes to the native depolarizing conductance of GHSR-expressing arcuate NPY neurons. Although the A203E mutation does not block ghrelin-evoked signaling as assessed using in vitro and ex vivo models, GHSR-A203E mice lack the usual acute food intake response to administered ghrelin in vivo. The GHSR-A203E mutation also blunts GH release, and in aged mice leads to reduced body length and femur length, which are consistent with the short stature of human carriers of the GHSR-A204E mutation.


Alleles , Amino Acid Substitution , Energy Metabolism/genetics , Mutation , Receptors, Ghrelin/genetics , Animals , Body Weights and Measures , Calcium Signaling , Cell Line , Electrophysiological Phenomena , Gene Expression Regulation , Gene Targeting , Genetic Association Studies , HEK293 Cells , Hormones/metabolism , Humans , Hypothalamus/metabolism , Mice , Mice, Knockout , Neurons/metabolism , Patch-Clamp Techniques , Receptors, Ghrelin/metabolism
11.
Ann N Y Acad Sci ; 1456(1): 186-199, 2019 11.
Article En | MEDLINE | ID: mdl-31659746

The orphan receptor GPR125 (ADGRA3) belongs to subgroup III of the adhesion G protein-coupled receptor (aGPCR) family. aGPCRs, also known as class B2 GPCRs, share basic structural and functional properties with other GPCRs. Many of them couple to G proteins and activate G protein-dependent and -independent signaling pathways, but little is known about aGPCR internalization and ß-arrestin recruitment. GPR125 was originally described as a spermatogonial stem cell marker and studied for its role in Wnt signaling and cell polarity. Here, using cell-based assays and confocal microscopy, we show that GPR125 is expressed on the cell surface and undergoes constitutive endocytosis in a ß-arrestin-independent, but clathrin-dependent manner, as indicated by colocalization with transferrin receptor 1, an early endosome marker. These data support that the constitutive internalization of GPR125 contributes to its biological functions by controlling receptor surface expression and accessibility for ligands. Our study sheds light on a new property of aGPCRs, namely internalization; a property described to be important for signal propagation, signal termination, and desensitization of class A (rhodopsin-like) and B1 (VIP/secretin) GPCRs.


Endocytosis , Receptors, G-Protein-Coupled/metabolism , HEK293 Cells , Humans , Protein Binding , Signal Transduction
...