Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Anim Cells Syst (Seoul) ; 25(5): 337-346, 2021.
Article En | MEDLINE | ID: mdl-34745439

In mammals, plasmatic osmolality needs to be stable, and it is highly related to the hydric state of the animals which depends on the activity of the hypothalamic neurohypophysial system and more particularly by vasopressin secretion. Meriones, a desert rodent, can survive even without drinking for more than one month. The mechanism(s) by which they survive under these conditions remains poorly understood. In this study, we examine the water's deprivation consequences on the: (1) anatomy, morphology, and physiology of the hypothalamic supraoptic nucleus, (2) body mass and plasma electrolytes changes in male desert rodents 'Meriones libycus' subjected to water deprivation for 30 days. The effect of water deprivation was evaluated on the structural and cellular organization of the supraoptic nucleus by morphological observations and immunohistochemical approaches, allowing the labeling of AVP but also oxytocin. Our finding demonstrated that upon water deprivation (1) the body weight decreased and reached a plateau after a month of water restriction. (2) The plasmatic osmolality began to decrease and return to values similar to control animals at day 30. (3) The SON, both in hydrated and water-deprived animals, is highly developed.(4) The AVP labeling in the SON increased upon dehydration at variance with OT. These changes observed in body mass and plasma osmolality reveal an important adaptive process of male Meriones in response to prolonged water deprivation. Overall, this animal represents an interesting model for the study of water body homeostasis and the mechanisms underlying the survival of desert rodents to xeric environments.

2.
Eur J Neurosci ; 53(11): 3612-3620, 2021 06.
Article En | MEDLINE | ID: mdl-33840135

The duration of daytime light phase (photoperiod) controls reproduction in seasonal mammals. Syrian hamsters are sexually active when exposed to long photoperiod, while gonadal atrophy is observed after exposure to short photoperiod. The photorefractory period, or photorefractoriness, is a particular state of spontaneous recrudescence of sexual activity that occurs after a long-term exposure to short photoperiod. Expression of core clock genes in the master circadian clock contained in the suprachiasmatic nuclei depends on photoperiodic conditions. Interestingly, the expression of the Clock gene is also modified in photorefractory Syrian hamsters. Since melatonin and testosterone levels in seasonal species are dependent on photoperiod, photoperiodic variations of Clock mRNA levels in the suprachiasmatic clock could be a consequence of these hormonal changes. To test this hypothesis, we analysed the effects of pinealectomy on Clock mRNA changes due to long to short photoperiod transition and of gonadectomy on Clock mRNA levels in photorefractory period. Our data show that the suprachiasmatic integration of the short photoperiod (assessed by a rhythmic expression profile of Clock) is independent of the presence of melatonin. Furthermore, constitutively low expression of Clock observed during the photorefractory period does not require the presence of either melatonin or testosterone. However, we show that both hormones provide positive feedback on average levels of Clock expression. Thus, our data support the hypothesis that daily variations of Clock levels in the suprachiasmatic nuclei are influenced by photoperiodic changes and the time spent in short photoperiod, independently of seasonal modifications of melatonin or testosterone levels.


Melatonin , Photoperiod , Animals , Castration , Circadian Rhythm , Cricetinae , Gene Expression , Mesocricetus , Pinealectomy , Suprachiasmatic Nucleus
3.
Tissue Cell ; 67: 101448, 2020 Dec.
Article En | MEDLINE | ID: mdl-33130457

To better understand the adaptive mechanisms in Uromastyx acanthinura to the seasonal variations in the arid environment, the present study aimed to explore the kidney functional morphology involved in body water economy. These investigations were carried out by the histological, histochemical and immuno-histochemical methods using conventional light microscopy. The glomeruli number is estimated at 2000 per kidney. The glomeruli size is rather small and decreases significantly in winter. Interestingly, the proximal convoluted tubule (PCT) is long and divided into two different segments which is one of the particularities of this species. Both of the distal convoluted tubule (DCT), connecting tubule (CnT) and collecting duct (CD) epithelium contains mucous cells. The nature and intensity of these mucous secretions vary according to seasons. The evident hypertrophy of the secondary collecting duct (SCD) and tertiary collecting duct (TCD) epithelium is related to the high secretory activity during spring, corresponding to the sexual segment of kidney (SSK). Labeling with anti α-smooth muscle actin-1 showed a thick layer of mucularis surrounded the entire CD. Also, the mesangium of glomeruli contains myofibroblasts. All these renal structural characteristics involved in body water economy may be considered as an adaptive mechanisms of U. acanthinura to resist to dehydration and cope with seasonal variations in the arid environment.


Body Water/metabolism , Kidney/anatomy & histology , Kidney/physiology , Lizards/anatomy & histology , Seasons , Actins/metabolism , Animals , Male , Nephrons/anatomy & histology
4.
Brain Res ; 1679: 116-124, 2018 01 15.
Article En | MEDLINE | ID: mdl-29196219

Reciprocal interactions closely connect energy metabolism with circadian rhythmicity. Altered clockwork and circadian desynchronization are often linked with impaired energy regulation. Conversely, metabolic disturbances have been associated with altered autonomic and hormonal rhythms. The effects of high-energy (HE) diet on the master clock in the suprachiasmatic nuclei (SCN) remain unclear.This question was addressed in the Sand rat (Psammomys obesus), a non-insulin-dependent diabetes mellitus (NIDDM) animal model. The aim of this work was to determine whether enriched diet in Psammomys affects locomotor activity rhythm, as well as daily oscillations in the master clock of the SCN and in an extra-SCN brain oscillator, the piriform cortex. Sand rats were fed during 3 months with either low or HE diet. Vasoactive intestinal peptide (VIP), vasopressin (AVP) and CLOCK protein cycling were studied by immunohistochemistry and running wheel protocol was used for behavioral analysis. High energy feeding dietary triggered hyperinsulinemia, impaired insulin/glucose ratio and disruption in pancreatic hormonal rhythms. Circadian disturbances in hyper-insulinemic animals include a lengthened rest/activity rhythm in constant darkness, as well as disappearance of daily rhythmicity of VIP, AVP and the circadian transcription factor CLOCK within the suprachiasmatic clock. In addition, daily rhythmicity of VIP and CLOCK was abolished by HE diet in a secondary brain oscillator, the piriform cortex. Our findings highlight a major impact of diabetogenic diet on central and peripheral rhythmicity. The Psammomys model will be instrumental to better understand the functional links between circadian clocks, glucose intolerance and insulin resistance state.


Biological Clocks/physiology , Brain/physiology , CLOCK Proteins/metabolism , Diet , Gene Expression Regulation/physiology , Insulin Resistance/physiology , Animals , Body Weight , Brain/drug effects , Dietary Fats/administration & dosage , Dietary Fiber/administration & dosage , Eating/physiology , Gerbillinae , Somatostatin/metabolism , Vasoactive Intestinal Peptide/metabolism , Vasopressins/metabolism
...