Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Integr Plant Biol ; 64(2): 412-430, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35029029

RESUMEN

Cereal crops are significant contributors to global diets. As climate change disrupts weather patterns and wreaks havoc on crops, the need for generating stress-resilient, high-yielding varieties is more urgent than ever. One extremely promising avenue in this regard is to exploit the tremendous genetic diversity expressed by the wild ancestors of current day crop species. These crop wild relatives thrive in a range of environments and accordingly often harbor an array of traits that allow them to do so. The identification and introgression of these traits into our staple cereal crops can lessen yield losses in stressful environments. In the last decades, a surge in extreme drought and flooding events have severely impacted cereal crop production. Climate models predict a persistence of this trend, thus reinforcing the need for research on water stress resilience. Here we review: (i) how water stress (drought and flooding) impacts crop performance; and (ii) how identification of tolerance traits and mechanisms from wild relatives of the main cereal crops, that is, rice, maize, wheat, and barley, can lead to improved survival and sustained yields in these crops under water stress conditions.


Asunto(s)
Deshidratación , Grano Comestible , Cambio Climático , Productos Agrícolas/genética , Grano Comestible/genética , Zea mays
2.
Curr Biol ; 30(21): 4165-4176.e5, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32888486

RESUMEN

The cell wall is the primary interface between plant cells and their immediate environment and must balance multiple functionalities, including the regulation of growth, the entry of beneficial microbes, and protection against pathogens. Here, we demonstrate how API, a SCAR2 protein component of the SCAR/WAVE complex, controls the root cell wall architecture important for pathogenic oomycete and symbiotic bacterial interactions in legumes. A mutation in API results in root resistance to the pathogen Phytophthora palmivora and colonization defects by symbiotic rhizobia. Although api mutant plants do not exhibit significant overall growth and development defects, their root cells display delayed actin and endomembrane trafficking dynamics and selectively secrete less of the cell wall polysaccharide xyloglucan. Changes associated with a loss of API establish a cell wall architecture with altered biochemical properties that hinder P. palmivora infection progress. Thus, developmental stage-dependent modifications of the cell wall, driven by SCAR/WAVE, are important in balancing cell wall developmental functions and microbial invasion.


Asunto(s)
Pared Celular/metabolismo , Resistencia a la Enfermedad/genética , Phytophthora/patogenicidad , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Actinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Medicago truncatula , Mutación , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Rhizobium/citología , Rhizobium/metabolismo , Simbiosis/genética
3.
Mol Plant Microbe Interact ; 33(2): 223-234, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31544656

RESUMEN

Streptomycetes are soil-dwelling, filamentous actinobacteria and represent a prominent bacterial clade inside the plant root microbiota. The ability of streptomycetes to produce a broad spectrum of antifungal metabolites suggests that these bacteria could be used to manage plant diseases. Here, we describe the identification of a soil Streptomyces strain named AgN23 which strongly activates a large array of defense responses when applied on Arabidopsis thaliana leaves. AgN23 increased the biosynthesis of salicylic acid, leading to the development of salicylic acid induction deficient 2 (SID2)-dependent necrotic lesions. Size exclusion fractionation of plant elicitors secreted by AgN23 showed that these signals are tethered into high molecular weight complexes. AgN23 mycelium was able to colonize the leaf surface, leading to plant resistance against Alternaria brassicicola infection in wild-type Arabidopsis plants. AgN23-induced resistance was found partially compromised in salicylate, jasmonate, and ethylene mutants. Our data show that Streptomyces soil bacteria can develop at the surface of plant leaves to induce defense responses and protection against foliar fungal pathogens, extending their potential use to manage plant diseases.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Resistencia a la Enfermedad , Micosis , Streptomyces , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Resistencia a la Enfermedad/fisiología , Regulación de la Expresión Génica de las Plantas , Mutación , Ácido Salicílico/metabolismo , Microbiología del Suelo , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo
4.
J Exp Bot ; 68(21-22): 5871-5881, 2017 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-29186498

RESUMEN

The roots of most land plants are colonized by symbiotic arbuscular mycorrhiza (AM) fungi. To facilitate this symbiosis, plant genomes encode a set of genes required for microbial perception and accommodation. However, the extent to which infection by filamentous root pathogens also relies on some of these genes remains an open question. Here, we used genome-wide association mapping to identify genes contributing to colonization of Medicago truncatula roots by the pathogenic oomycete Phytophthora palmivora. Single-nucleotide polymorphism (SNP) markers most significantly associated with plant colonization response were identified upstream of RAD1, which encodes a GRAS transcription regulator first negatively implicated in root nodule symbiosis and recently identified as a positive regulator of AM symbiosis. RAD1 transcript levels are up-regulated both in response to AM fungus and, to a lower extent, in infected tissues by P. palmivora where its expression is restricted to root cortex cells proximal to pathogen hyphae. Reverse genetics showed that reduction of RAD1 transcript levels as well as a rad1 mutant are impaired in their full colonization by AM fungi as well as by P. palmivora. Thus, the importance of RAD1 extends beyond symbiotic interactions, suggesting a general involvement in M. truncatula microbe-induced root development and interactions with unrelated beneficial and detrimental filamentous microbes.


Asunto(s)
Endodesoxirribonucleasas/genética , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Medicago truncatula/microbiología , Micorrizas/fisiología , Phytophthora/fisiología , Proteínas de Plantas/genética , Susceptibilidad a Enfermedades , Endodesoxirribonucleasas/metabolismo , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Patógeno , Medicago truncatula/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA