Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 96
1.
Clin Transl Sci ; 17(5): e13804, 2024 May.
Article En | MEDLINE | ID: mdl-38700454

St. John's wort (SJW) extract, a herbal medicine with antidepressant effects, is a potent inducer of intestinal and/or hepatic cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), which can cause clinically relevant drug interactions. It is currently not known whether SJW can also induce P-gp activity at the human blood-brain barrier (BBB), which may potentially lead to decreased brain exposure and efficacy of certain central nervous system (CNS)-targeted P-gp substrate drugs. In this study, we used a combination of positron emission tomography (PET) imaging and cocktail phenotyping to gain a comprehensive picture on the effect of SJW on central and peripheral P-gp and CYP activities. Before and after treatment of healthy volunteers (n = 10) with SJW extract with a high hyperforin content (3-6%) for 12-19 days (1800 mg/day), the activity of P-gp at the BBB was assessed by means of PET imaging with the P-gp substrate [11C]metoclopramide and the activity of peripheral P-gp and CYPs was assessed by administering a low-dose phenotyping cocktail (caffeine, omeprazole, dextromethorphan, and midazolam or fexofenadine). SJW significantly increased peripheral P-gp, CYP3A, and CYP2C19 activity. Conversely, no significant changes in the peripheral metabolism, brain distribution, and P-gp-mediated efflux of [11C]metoclopramide across the BBB were observed following the treatment with SJW extract. Our data suggest that SJW does not lead to significant P-gp induction at the human BBB despite its ability to induce peripheral P-gp and CYPs. Simultaneous intake of SJW with CNS-targeted P-gp substrate drugs is not expected to lead to P-gp-mediated drug interactions at the BBB.


Blood-Brain Barrier , Hypericum , Phloroglucinol , Phloroglucinol/analogs & derivatives , Plant Extracts , Positron-Emission Tomography , Terfenadine/analogs & derivatives , Terpenes , Humans , Hypericum/chemistry , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Phloroglucinol/pharmacokinetics , Phloroglucinol/pharmacology , Phloroglucinol/administration & dosage , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/pharmacokinetics , Male , Adult , Positron-Emission Tomography/methods , Terpenes/pharmacology , Terpenes/pharmacokinetics , Terpenes/metabolism , Female , Young Adult , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Bridged Bicyclo Compounds/pharmacology , Bridged Bicyclo Compounds/pharmacokinetics , Bridged Bicyclo Compounds/administration & dosage , Terfenadine/pharmacokinetics , Terfenadine/administration & dosage , Terfenadine/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Healthy Volunteers
2.
Ann Pharm Fr ; 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38657857

Numerous studies suggest that blood-brain barrier (BBB) dysfunction may contribute to the progression of Alzheimer's disease (AD). Clinically available neuroimaging methods are needed for quantitative "scoring" of BBB permeability in AD patients. [18F]2-fluoro-2-deoxy-sorbitol ([18F]FDS), which can be easily obtained from simple chemical reduction of commercial [18F]2-fluoro-2-deoxy-glucose ([18F]FDG), was investigated as a small-molecule marker of BBB permeability, in a pre-clinical model of AD using in vivo PET imaging. Chemical reduction of [18F]FDG to [18F]FDS was obtained with a 100% conversion yield. Dynamic PET acquisitions were performed in the APP/PS1 rat model of AD (TgF344-AD, n=3) compared with age-matched littermates (WT, n=4). The brain uptake of [18F]FDS was determined in selected brain regions, delineated from a coregistered rat brain template. The brain uptake of [18F]FDS in the brain regions of AD rats versus WT rats was compared using a 2-way ANOVA. The uptake of [18F]FDS was significantly higher in the whole brain of AD rats, as compared with WT rats (P<0.001), suggesting increased BBB permeability. Enhanced brain uptake of [18F]FDS in AD rats was significantly different across brain regions (P<0.001). Minimum difference was observed in the amygdala (+89.0±7.6%, P<0.001) and maximum difference was observed in the midbrain (+177.8±29.2%, P<0.001). [18F]FDS, initially proposed as radio-pharmaceutical to estimate renal filtration using PET imaging, can be repurposed for non-invasive and quantitative determination of BBB permeability in vivo. Making the best with the quantitative properties of PET imaging, it was possible to estimate the extent of enhanced BBB permeability in a rat model of AD.

3.
J Cereb Blood Flow Metab ; : 271678X241236755, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38441006

The quantitative relationship between the disruption of the blood-brain barrier (BBB) and the recruitment of glial cells was explored in a mouse model of endotoxemia. [18F]2-Fluoro-2-deoxy-sorbitol ([18F]FDS) PET imaging was used as a paracellular marker for quantitative monitoring of BBB permeability after i.v injection of increasing doses of lipopolysaccharide (LPS) or vehicle (saline, n = 5). The brain distribution of [18F]FDS (VT, mL.cm-3) was estimated using kinetic modeling. LPS dose-dependently increased the brain VT of [18F]FDS after injection of LPS 4 mg/kg (5.2 ± 2.4-fold, n = 4, p < 0.01) or 5 mg/kg (9.0 ± 9.1-fold, n = 4, p < 0.01) but not 3 mg/kg (p > 0.05, n = 7). In 12 individuals belonging to the different groups, changes in BBB permeability were compared with expression of markers of astrocyte (GFAP) and microglial cell (CD11b) using ex vivo immunohistochemistry. Increased expression of CD11b and GFAP expression was observed in mice injected with 3 mg/kg of LPS, which did not increase with higher LPS doses. Quantitative [18F]FDS PET imaging can capture different levels of BBB permeability in vivo. A biphasic effect was observed with the lowest dose of LPS that triggered neuroinflammation without disruptive changes in BBB permeability, and higher LPS doses that increased BBB permeability without additional recruitment of glial cells.

4.
Pharmaceutics ; 16(3)2024 Mar 05.
Article En | MEDLINE | ID: mdl-38543255

We will be serving as the Guest Editor for this very interesting Special Issue on "Non-Invasive Device-Mediated Drug Delivery to the Brain Across the Blood-Brain Barrier" [...].

5.
Mol Pharm ; 21(2): 932-943, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38225758

P-glycoprotein (P-gp, encoded in humans by the ABCB1 gene and in rodents by the Abcb1a/b genes) is a membrane transporter that can restrict the intestinal absorption and tissue distribution of many drugs and may also contribute to renal and hepatobiliary drug excretion. The aim of this study was to compare the performance and sensitivity of currently available radiolabeled P-gp substrates for positron emission tomography (PET) with the single-photon emission computed tomography (SPECT) radiotracer [99mTc]Tc-sestamibi for measuring the P-gp function in the kidneys and liver. Wild-type, heterozygous (Abcb1a/b(+/-)), and homozygous (Abcb1a/b(-/-)) Abcb1a/b knockout mice were used as models of different P-gp abundance in excretory organs. Animals underwent either dynamic PET scans after intravenous injection of [11C]N-desmethyl-loperamide, (R)-[11C]verapamil, or [11C]metoclopramide or consecutive static SPECT scans after intravenous injection of [99mTc]Tc-sestamibi. P-gp in the kidneys and liver of the mouse models was analyzed with immunofluorescence labeling and Western blotting. In the kidneys, Abcb1a/b() mice had intermediate P-gp abundance compared with wild-type and Abcb1a/b(-/-) mice. Among the four tested radiotracers, renal clearance of radioactivity (CLurine,kidney) was significantly reduced (-83%) in Abcb1a/b(-/-) mice only for [99mTc]Tc-sestamibi. Biliary clearance of radioactivity (CLbile,liver) was significantly reduced in Abcb1a/b(-/-) mice for [11C]N-desmethyl-loperamide (-47%), [11C]metoclopramide (-25%), and [99mTc]Tc-sestamibi (-79%). However, in Abcb1a/b(+/-) mice, CLbile,liver was significantly reduced (-47%) only for [99mTc]Tc-sestamibi. Among the tested radiotracers, [99mTc]Tc-sestamibi performed best in measuring the P-gp function in the kidneys and liver. Owing to its widespread clinical availability, [99mTc]Tc-sestamibi represents a promising probe substrate to assess systemic P-gp-mediated drug-drug interactions and to measure renal and hepatic P-gp function under different (patho-)physiological conditions.


ATP Binding Cassette Transporter, Subfamily B, Member 1 , Metoclopramide , Humans , Mice , Animals , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Tomography, X-Ray Computed , ATP Binding Cassette Transporter, Subfamily B/genetics , Positron-Emission Tomography/methods , Radiopharmaceuticals , Liver/diagnostic imaging , Tomography, Emission-Computed, Single-Photon , Kidney/diagnostic imaging , Nitriles , Organotechnetium Compounds , Mice, Knockout
6.
Clin Pharmacol Ther ; 115(3): 595-605, 2024 03.
Article En | MEDLINE | ID: mdl-38037845

Tissue drug concentrations determine the efficacy and toxicity of drugs. When a drug is the substrate of transporters that are present at the blood:tissue barrier, the steady-state unbound tissue drug concentrations cannot be predicted from their corresponding plasma concentrations. To accurately predict transporter-modulated tissue drug concentrations, all clearances (CLs) mediating the drug's entry and exit (including metabolism) from the tissue must be accurately predicted. Because primary cells of most tissues are not available, we have proposed an alternative approach to predict such CLs, that is the use of transporter-expressing cells/vesicles (TECs/TEVs) and relative expression factor (REF). The REF represents the abundance of the relevant transporters in the tissue vs. in the TECs/TEVs. Here, we determined the transporter-based intrinsic CL of glyburide (GLB) and pitavastatin (PTV) in OATP1B1, OATP1B3, OATP2B1, and NTCP-expressing cells and MRP3-, BCRP-, P-gp-, and MRP2-expressing vesicles and scaled these CLs to in vivo using REF. These predictions fell within a priori set twofold range of the hepatobiliary CLs of GLB and PTV, estimated from their hepatic positron emission tomography imaging data: 272.3 and 607.8 mL/min for in vivo hepatic sinusoidal uptake CL, 47.8 and 17.4 mL/min for sinusoidal efflux CL, and 0 and 4.20 mL/min for biliary efflux CL, respectively. Moreover, their predicted hepatic concentrations (area under the hepatic concentration-time curve (AUC) and maximum plasma concentration (Cmax )), fell within twofold of their mean observed data. These data, together with our previous findings, confirm that the REF approach can successfully predict transporter-based drug CLs and tissue concentrations to enhance success in drug development.


Organic Anion Transporters , Proteomics , Humans , Proteomics/methods , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Neoplasm Proteins/metabolism , Liver/metabolism , Biological Transport , Membrane Transport Proteins/metabolism , Organic Anion Transporters/metabolism , Hepatocytes/metabolism
7.
J Cereb Blood Flow Metab ; 44(1): 142-152, 2024 01.
Article En | MEDLINE | ID: mdl-37728771

The efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier limits the cerebral uptake of various xenobiotics. To assess the sensitivity of [11C]metoclopramide to measure decreased cerebral P-gp function, we performed [11C]metoclopramide PET scans without (baseline) and with partial P-gp inhibition by tariquidar in wild-type, heterozygous Abcb1a/b(+/-) and homozygous Abcb1a/b(-/-) mice as models with controlled levels of cerebral P-gp expression. Brains were collected to quantify P-gp expression with immunohistochemistry. Brain uptake of [11C]metoclopramide was expressed as the area under the brain time-activity curve (AUCbrain) and compared with data previously obtained with (R)-[11C]verapamil and [11C]N-desmethyl-loperamide. Abcb1a/b(+/-) mice had intermediate P-gp expression compared to wild-type and Abcb1a/b(-/-) mice. In baseline scans, all three radiotracers were able to discriminate Abcb1a/b(-/-) from wild-type mice (2.5- to 4.6-fold increased AUCbrain, p ≤ 0.0001). However, only [11C]metoclopramide could discriminate Abcb1a/b(+/-) from wild-type mice (1.46-fold increased AUCbrain, p ≤ 0.001). After partial P-gp inhibition, differences in [11C]metoclopramide AUCbrain between Abcb1a/b(+/-) and wild-type mice (1.39-fold, p ≤ 0.001) remained comparable to baseline. There was a negative correlation between baseline [11C]metoclopramide AUCbrain and ex-vivo-measured P-gp immunofluorescence (r = -0.9875, p ≤ 0.0001). Our data suggest that [11C]metoclopramide is a sensitive radiotracer to measure moderate, but (patho-)physiologically relevant decreases in cerebral P-gp function without the need to co-administer a P-gp inhibitor.


ATP Binding Cassette Transporter, Subfamily B, Member 1 , Blood-Brain Barrier , Mice , Animals , Blood-Brain Barrier/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Metoclopramide/metabolism , Brain/diagnostic imaging , Brain/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Positron-Emission Tomography
8.
J Cereb Blood Flow Metab ; 44(3): 449-458, 2024 03.
Article En | MEDLINE | ID: mdl-38097513

Among opioids, buprenorphine presents a favorable safety profile with a limited risk of respiratory depression. However, fatalities have been reported when buprenorphine is combined to a benzodiazepine. Potentiation of buprenorphine interaction with opioid receptors (ORs) with benzodiazepines, and/or vice versa, is hypothesized to explain this drug-drug interaction (DDI). The mutual DDI between buprenorphine and benzodiazepines was investigated at the neuroreceptor level in nonhuman primates (n = 4 individuals) using brain PET imaging and kinetic modelling. The binding potential (BPND) of benzodiazepine receptor (BzR) was assessed using 11C-flumazenil PET imaging before and after administration of buprenorphine (0.2 mg, i.v.). Moreover, the brain kinetics and receptor binding of buprenorphine were investigated in the same individuals using 11C-buprenorphine PET imaging before and after administration of diazepam (10 mg, i.v.). Outcome parameters were compared using a two-way ANOVA. Buprenorphine did not impact the plasma nor brain kinetics of 11C-flumazenil. 11C-flumazenil BPND was unchanged following buprenorphine exposure, in any brain region (p > 0.05). Similarly, diazepam did not impact the plasma or brain kinetics of 11C-buprenorphine. 11C-buprenorphine volume of distribution (VT) was unchanged following diazepam exposure, in any brain region (p > 0.05). To conclude, our PET imaging findings do not support a neuropharmacokinetic or neuroreceptor-related mechanism of the buprenorphine/benzodiazepine interaction.


Benzodiazepines , Buprenorphine , Animals , Benzodiazepines/metabolism , Flumazenil/pharmacokinetics , Buprenorphine/metabolism , Positron-Emission Tomography/methods , Diazepam/metabolism , Receptors, GABA-A/metabolism , Brain/diagnostic imaging , Brain/metabolism
9.
Theranostics ; 13(15): 5584-5596, 2023.
Article En | MEDLINE | ID: mdl-37908736

Rationale: The passage of antibodies through the blood-brain barrier (BBB) and the blood-tumoral barrier (BTB) is determinant not only to increase the immune checkpoint inhibitors efficacy but also to monitor prognostic and predictive biomarkers such as the programmed death ligand 1 (PD-L1) via immunoPET. Although the involvement of neonatal Fc receptor (FcRn) in antibody distribution has been demonstrated, its function at the BBB remains controversial, while it is unknown at the BTB. In this context, we assessed FcRn's role by pharmacokinetic immunoPET imaging combined with focused ultrasounds (FUS) using unmodified and FcRn low-affinity IgGs targeting PD-L1 in a preclinical orthotopic glioblastoma model. Methods: Transcranial FUS were applied over the whole brain in mice shortly before injecting the anti-PD-L1 IgG 89Zr-DFO-C4 or its FcRn low-affinity mutant 89Zr-DFO-C4Fc-MUT in a syngeneic glioblastoma murine model (GL261-GFP). Brain uptake was measured from PET scans acquired up to 7 days post-injection. Kinetic modeling was performed to compare the brain kinetics of both C4 formats. Results: FUS efficiently enhanced the delivery of both C4 radioligands in the brain with high reproducibility. 89Zr-DFO-C4Fc-MUT mean concentrations in the brain reached a significant uptake of 3.75±0.41%ID/cc with FUS against 1.92±0.45%ID/cc without, at 1h post-injection. A substantial and similar entry of both C4 radioligands was observed at a rate of 0.163±0.071 mL/h/g of tissue during 10.4±4.6min. The impaired interaction with FcRn of 89Zr-DFO-C4Fc-MUT significantly decreased the efflux constant from the healthy brain tissue to plasma compared with non-mutated IgG. Abolishing FcRn interaction allows determining the target engagement related to the specific binding as soon as 12h post-injection. Conclusion: Abolishing Fc-FcRn interaction confers improved kinetic properties to 89Zr-DFO-C4Fc-MUT for immunoPET imaging. FUS-aided BBB/BTB disruption enables quantitative imaging of PD-L1 expression by glioblastoma tumors within the brain.


B7-H1 Antigen , Glioblastoma , Animals , Mice , Antibodies, Monoclonal/chemistry , B7-H1 Antigen/metabolism , Cell Line, Tumor , Glioblastoma/diagnostic imaging , Immunoglobulin Fc Fragments , Immunoglobulin G , Positron-Emission Tomography/methods , Reproducibility of Results , Zirconium/chemistry
10.
Mol Pharm ; 20(11): 5877-5887, 2023 11 06.
Article En | MEDLINE | ID: mdl-37883694

P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are two ATP-binding cassette efflux transporters that are coexpressed at the human blood-brain barrier (BBB) and blood-retina barrier (BRB). While pharmacological inhibition of P-gp and/or BCRP results in increased brain distribution of dual P-gp/BCRP substrate drugs, such as the tyrosine kinase inhibitor erlotinib, the effect of P-gp and/or BCRP inhibition on the retinal distribution of such drugs has hardly been investigated. In this study, we used positron emission tomography (PET) imaging to assess the effect of transporter inhibition on the distribution of [11C]erlotinib to the human retina and brain. Twenty two healthy volunteers underwent two PET scans after intravenous (i.v.) injection of a microdose (<5 µg) of [11C]erlotinib, a baseline scan, and a second scan either with concurrent i.v. infusion of tariquidar to inhibit P-gp (n = 5) or after oral intake of single ascending doses of erlotinib (300 mg, 650 mg, or 1000 mg, n = 17) to saturate erlotinib transport. In addition, transport of [3H]erlotinib to the retina and brain was assessed in mice by in situ carotid perfusion under various drug transporter inhibition settings. In comparison to the baseline PET scan, coadministration of tariquidar or erlotinib led to a significant decrease of [11C]erlotinib total volume of distribution (VT) in the human retina by -25 ± 8% (p ≤ 0.05) and -41 ± 16% (p ≤ 0.001), respectively. In contrast, erlotinib intake led to a significant increase in [11C]erlotinib VT in the human brain (+20 ± 16%, p ≤ 0.001), while administration of tariquidar did not result in any significant changes. In situ carotid perfusion experiments showed that both P-gp and BCRP significantly limit the distribution of erlotinib to the mouse retina and brain but revealed a similar discordant effect at the mouse BRB and BBB following co-perfusion with tariquidar and erlotinib as in humans. Co-perfusion with prototypical inhibitors of solute carrier transporters did not reveal a significant contribution of organic cation transporters (e.g., OCTs and OCTNs) and organic anion-transporting polypeptides (e.g., OATP2B1) to the retinal and cerebral distribution of erlotinib. In conclusion, we observed a dissimilar effect after P-gp and/or BCRP inhibition on the retinal and cerebral distribution of [11C]erlotinib. The exact mechanism for this discrepancy remains unclear but may be related to the function of an unidentified erlotinib uptake carrier sensitive to tariquidar inhibition at the BRB. Our study highlights the great potential of PET to study drug distribution to the human retina and to assess the functional impact of membrane transporters on ocular drug distribution.


ATP Binding Cassette Transporter, Subfamily B, Member 1 , Breast Neoplasms , Humans , Mice , Animals , Female , Erlotinib Hydrochloride , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Neoplasm Proteins/metabolism , Brain/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Blood-Brain Barrier/metabolism , ATP-Binding Cassette Transporters/metabolism , Blood-Retinal Barrier/metabolism , Membrane Transport Proteins/metabolism , Breast Neoplasms/metabolism
11.
Mol Imaging Biol ; 25(6): 1135-1141, 2023 Dec.
Article En | MEDLINE | ID: mdl-37801196

PURPOSE: PET imaging using [11C]metoclopramide revealed the importance of P-glycoprotein (P-gp, ABCB1) in mediating the brain-to-blood efflux of substrates across the blood-brain barrier (BBB). In this work, the elimination rate constant from the brain (kE,brain), calculated from dynamic PET images without the need for arterial blood sampling, was evaluated as an outcome parameter for the interpretation of [11C]metoclopramide PET data. PROCEDURES: kE,brain parameter was obtained by linear regression of log-transformed brain time-activity curves (TACs). kE,brain values (h-1) obtained under baseline conditions were compared with values obtained after complete P-gp inhibition using tariquidar in rats (n = 4) and baboons (n = 4) or after partial inhibition using cyclosporine A in humans (n = 10). In baboons, the sensitivity of kE,brain to measure complete P-gp inhibition was compared with outcome parameters derived from kinetic modeling using a 1-tissue compartment model (1-TCM). Finally, kE,brain-maps were generated in each species using PMOD software. RESULTS: The linear part of the log-transformed brain TACs occurred from 10 to 30 min after radiotracer injection in rats, from 15 to 60 min in baboons, and from 20 to 60 min in humans. P-gp inhibition significantly decreased kE,brain values by 39 ± 12% in rats (p < 0.01), by 32 ± 6% in baboons (p < 0.001), and by 37 ± 22% in humans (p < 0.001). In baboons, P-gp inhibition consistently decreased the brain-to-plasma efflux rate constant k2 (36 ± 9%, p < 0.01) leading to an increase in the total brain volume of distribution (VT, 101 ± 12%, p < 0.001). In all studied species, brain kE,brain-maps displayed decreased P-gp-mediated efflux across the BBB. CONCLUSIONS: kE,brain of [11C]metoclopramide provides a simple outcome parameter to describe P-gp function in the living brain when arterial input function data are unavailable, although less sensitive than VT. kE,brain-maps represent easy to compute parametric images reflecting the effect of P-gp on [11C]metoclopramide elimination from the brain.


ATP Binding Cassette Transporter, Subfamily B, Member 1 , Blood-Brain Barrier , Humans , Rats , Animals , Blood-Brain Barrier/diagnostic imaging , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/pharmacology , Metoclopramide , Brain/diagnostic imaging , Brain/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Positron-Emission Tomography/methods , Papio/metabolism
12.
Neurology ; 101(19): e1893-e1904, 2023 11 07.
Article En | MEDLINE | ID: mdl-37748889

BACKGROUND AND OBJECTIVES: Translocator protein 18 kDa (TSPO) PET imaging is used to monitor glial activation. Recent studies have proposed TSPO PET as a marker of the epileptogenic zone (EZ) in drug-resistant focal epilepsy (DRFE). This study aims to assess the contributions of TSPO imaging using [18F]DPA-714 PET and [18F]FDG PET for localizing the EZ during presurgical assessment of DRFE, when phase 1 presurgical assessment does not provide enough information. METHODS: We compared [18F]FDG and [18F]DPA-714 PET images of 23 patients who had undergone a phase 1 presurgical assessment, using qualitative visual analysis and quantitative analysis, at both the voxel and the regional levels. PET abnormalities (increase in binding for [18F]DPA-714 vs decrease in binding for [18F]FDG) were compared with clinical hypotheses concerning the localization of the EZ based on phase 1 presurgical assessment. The additional value of [18F]DPA-714 PET imaging to [18F]FDG for refining the localization of the EZ was assessed. To strengthen the visual analysis, [18F]DPA-714 PET imaging was also reviewed by 2 experienced clinicians blind to the EZ location. RESULTS: The study included 23 patients. Visual analysis of [18F]DPA-714 PET was significantly more accurate than [18F]FDG PET to both, show anomalies (95.7% vs 56.5%, p = 0.022), and provide additional information to refine the EZ localization (65.2% vs 17.4%, p = 0.019). All 10 patients with normal [18F]FDG PET had anomalies when using [18F]DPA-714 PET. The additional value of [18F]DPA-714 PET seemed to be greater in patients with normal brain MRI or with neocortical EZ (especially if insula is involved). Regional analysis of [18F]DPA-714 and [18F]FDG PET provided similar results. However, using voxel-wise analysis, [18F]DPA-714 was more effective than [18F]FDG for unveiling clusters whose localization was more often consistent with the EZ hypothesis (87.0% vs 39.1%, p = 0.019). Nonrelevant bindings were seen in 14 of 23 patients in visual analysis and 9 patients of 23 patients in voxel-wise analysis. DISCUSSION: [18F]DPA-714 PET imaging provides valuable information for presurgical assessments of patients with DRFE. TSPO PET could become an additional tool to help to the localization of the EZ, especially in patients with negative [18F]FDG PET. TRIAL REGISTRATION INFORMATION: Eudract 2017-003381-27. Inclusion of the first patient: September 24, 2018. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence on the utility of [18F]DPA-714 PET compared with [18F]FDG PET in identifying the epileptic zone in patients undergoing phase 1 presurgical evaluation for intractable epilepsy.


Drug Resistant Epilepsy , Epilepsies, Partial , Humans , Fluorodeoxyglucose F18 , Magnetic Resonance Imaging , Positron-Emission Tomography/methods , Electroencephalography , Receptors, GABA
13.
J Control Release ; 361: 483-492, 2023 09.
Article En | MEDLINE | ID: mdl-37562557

The P-glycoprotein (P-gp/ABCB1) is a major efflux transporter which impedes the brain delivery of many drugs across the blood-brain barrier (BBB). Focused ultrasound with microbubbles (FUS) enables BBB disruption, which immediate and delayed impact on P-gp function remains unclear. Positron emission tomography (PET) imaging using the radiolabeled substrate [11C]metoclopramide provides a sensitive and translational method to study P-gp function at the living BBB. A FUS protocol was devised in rats to induce a substantial and targeted disruption of the BBB in the left hemisphere. BBB disruption was confirmed by the Evan's Blue extravasation test or the minimally-invasive contrast-enhanced MRI. The expression of P-gp was measured 24 h or 48 h after FUS using immunostaining and fluorescence microscopy. The brain kinetics of [11C]metoclopramide was studied by PET at baseline, and both immediately or 24 h after FUS, with or without half-maximum P-gp inhibition (tariquidar 1 mg/kg). In each condition (n = 4-5 rats per group), brain exposure of [11C]metoclopramide was estimated as the area-under-the-curve (AUC) in regions corresponding to the sonicated volume in the left hemisphere, and the contralateral volume. Kinetic modeling was performed to estimate the uptake clearance ratio (R1) of [11C]metoclopramide in the sonicated volume relative to the contralateral volume. In the absence of FUS, half-maximum P-gp inhibition increased brain exposure (+135.0 ± 12.9%, p < 0.05) but did not impact R1 (p > 0.05). Immediately after FUS, BBB integrity was selectively disrupted in the left hemisphere without any detectable impact on the brain kinetics of [11C]metoclopramide compared with the baseline group (p > 0.05) or the contralateral volume (p > 0.05). 24 h after FUS, BBB integrity was fully restored while P-gp expression was maximally down-regulated (-45.0 ± 4.5%, p < 0.001) in the sonicated volume. This neither impacted AUC nor R1 in the FUS + 24 h group (p > 0.05). Only when P-gp was inhibited with tariquidar were the brain exposure (+130 ± 70%) and R1(+29.1 ± 15.4%) significantly increased in the FUS + 24 h/tariquidar group, relative to the baseline group (p < 0.001). We conclude that the brain kinetics of [11C]metoclopramide specifically depends on P-gp function rather than BBB integrity. Delayed FUS-induced down-regulation of P-gp function can be detected. Our results suggest that almost complete down-regulation is required to substantially enhance the brain delivery of P-gp substrates.


ATP Binding Cassette Transporter, Subfamily B, Member 1 , Blood-Brain Barrier , Animals , Rats , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/metabolism , Metoclopramide/metabolism
14.
J Am Chem Soc ; 145(30): 16760-16770, 2023 08 02.
Article En | MEDLINE | ID: mdl-37486080

The need for carbon-labeled radiotracers is increasingly higher in drug discovery and development (carbon-14, ß-, t1/2 = 5730 years) as well as in positron emission tomography (PET) for in vivo molecular imaging applications (carbon-11, ß+, t1/2 = 20.4 min). However, the structural diversity of radiotracers is still systematically driven by the narrow available labeled sources and methodologies. In this context, the emergence of carbon dioxide radical anion chemistry might set forth potential unexplored opportunities. Based on a dynamic isotopic equilibration between formate salts and [13C, 14C, 11C]CO2, C-labeled radical anion CO2•- could be accessed under extremely mild conditions within seconds. This methodology was successfully applied to hydrocarboxylation and dicarboxylation reactions in late-stage carbon isotope labeling of pharmaceutically relevant compounds. The relevance of the method in applied radiochemistry was showcased by the whole-body PET biodistribution profile of [11C]oxaprozin in mice.


Carbon Dioxide , Salts , Mice , Animals , Carbon Isotopes , Carbon Radioisotopes , Carbon Dioxide/chemistry , Tissue Distribution , Anions , Positron-Emission Tomography/methods , Formates , Isotope Labeling
15.
Front Neurosci ; 17: 1181786, 2023.
Article En | MEDLINE | ID: mdl-37234261

Aim: Buprenorphine mainly acts as an agonist of mu-opioid receptors (mu-OR). High dose buprenorphine does not cause respiratory depression and can be safely administered to elicit typical opioid effects and explore pharmacodynamics. Acute buprenorphine, associated with functional and quantitative neuroimaging, may therefore provide a fully translational pharmacological challenge to explore the variability of response to opioids in vivo. We hypothesized that the CNS effects of acute buprenorphine could be monitored through changes in regional brain glucose metabolism, assessed using 18F-FDG microPET in rats. Materials and methods: First, level of receptor occupancy associated with a single dose of buprenorphine (0.1 mg/kg, s.c) was investigated through blocking experiments using 11C-buprenorphine PET imaging. Behavioral study using the elevated plus-maze test (EPM) was performed to assess the impact of the selected dose on anxiety and also locomotor activity. Then, brain PET imaging using 18F-FDG was performed 30 min after injection of unlabeled buprenorphine (0.1 mg/kg, s.c) vs. saline. Two different 18F-FDG PET acquisition paradigms were compared: (i) 18F-FDG injected i.v. under anesthesia and (ii) 18F-FDG injected i.p. in awake animals to limit the impact of anesthesia. Results: The selected dose of buprenorphine fully blocked the binding of 11C-buprenorphine in brain regions, suggesting complete receptor occupancy. This dose had no significant impact on behavioral tests used, regardless of the anesthetized/awake handling paradigm. In anesthetized rats, injection of unlabeled buprenorphine decreased the brain uptake of 18F-FDG in most brain regions except in the cerebellum which could be used as a normalization region. Buprenorphine treatment significantly decreased the normalized brain uptake of 18F-FDG in the thalamus, striatum and midbrain (p < 0.05), where binding of 11C-buprenorphine was the highest. The awake paradigm did not improve sensitivity and impact of buprenorphine on brain glucose metabolism could not be reliably estimated. Conclusion: Buprenorphine (0.1 mg/kg, s.c) combined with 18F-FDG brain PET in isoflurane anesthetized rats provides a simple pharmacological imaging challenge to investigate the CNS effects of full receptor occupancy by this partial mu-OR agonist. Sensitivity of the method was not improved in awake animals. This strategy may be useful to investigate de desensitization of mu-OR associated with opioid tolerance in vivo.

18.
Eur J Pharm Sci ; 183: 106404, 2023 Apr 01.
Article En | MEDLINE | ID: mdl-36773747

In the lungs, the membrane transporter P-glycoprotein (P-gp) is expressed in the apical (i.e. lumen-facing) membrane of airway epithelial cells and in the luminal (blood-facing) membrane of pulmonary capillary endothelial cells. To better understand the influence of P-gp on the pulmonary disposition of inhaled P-gp substrate drugs, we measured the intrapulmonary pharmacokinetics of the intratracheally (i.t.) aerosolized model P-gp substrate [11C]metoclopramide in presence and absence of P-gp activity by means of positron emission tomography (PET) imaging in rats. Data were compared to data previously acquired with the model P-gp substrates (R)-[11C]verapamil and [11C]N-desmethyl-loperamide, using the same experimental set-up. Groups of wild-type rats, either untreated or treated with the P-gp inhibitor tariquidar, and Abcb1a/b(-/-) rats underwent 90-min dynamic PET scans after i.t. aerosolization of [11C]metoclopramide. Lung exposure to [11C]metoclopramide was expressed as the area under the right lung concentration-time curve (AUClung). AUClung values were significantly higher in Abcb1a/b(-/-) rats (1.8-fold, p ≤ 0.0001) and in tariquidar-treated wild-type rats (1.6-fold, p ≤ 0.01) than in untreated wild-type rats. This differed from previously obtained results with (R)-[11C]verapamil and [11C]N-desmethyl-loperamide, which showed decreased exposure in the rat lung in absence of P-gp activity. Our results suggest that transepithelial transfer of [11C]metoclopramide was not or only to a small extent affected by P-gp activity, presumably due to the compound's high passive permeability. The increased lung retention of [11C]metoclopramide may be due to decreased P-gp-mediated clearance into the blood in absence of P-gp activity in capillary endothelial cells. The overall effect of P-gp on the lung exposure to inhaled P-gp substrate drugs may, thus, be determined by a balance of opposing effects at the pulmonary epithelium and endothelium.


ATP Binding Cassette Transporter, Subfamily B, Member 1 , Blood-Brain Barrier , Rats , Animals , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Blood-Brain Barrier/metabolism , Metoclopramide/pharmacokinetics , Endothelial Cells/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Positron-Emission Tomography/methods , Verapamil/pharmacology , Carbon Radioisotopes , Lung/metabolism
19.
Eur J Pharm Biopharm ; 182: 141-151, 2023 Jan.
Article En | MEDLINE | ID: mdl-36529256

INTRODUCTION: Glioblastoma (GBM) is the most common and deadly form of primary brain tumor. Between 30 % and 60 % of GBM are characterized by overexpression of the Epidermal Growth Factor Receptor (EGFR). The anti-EGFR antibody Cetuximab (CTX) showed a favorable effect for EGFR+ colorectal cancer but failed to demonstrate efficacy for GBM. Insufficient CTX passage through the blood-brain barrier (BBB) and the blood-tumor barrier (BTB) is assumed to be the primary determinant of the limited efficacy of this immunotherapy. OBJECTIVE: Using positron emission tomography (PET) imaging, we have previously demonstrated that focused ultrasound (FUS) combined with microbubbles (µB) allowed significant and persistent delivery of CTX across the BBB in healthy mice. In the current study, we investigated by PET imaging the combination impact of CTX and FUS on orthotopic GBM preclinical model. METHODS: After radiolabeling CTX with the long half-life isotope 89Zr, PET images have been acquired overtime in mice bearing U251 (EGFR+) with or without FUS treatment. Autoradiography combined with immunofluorescence staining was used to corroborate CTX delivery with EGFR expression. A survival study was conducted simultaneously to evaluate the therapeutic benefit of repeated CTX monotherapy associated or not with FUS. RESULTS: Ex vivo analysis confirmed that FUS enhanced and homogenized the delivery of CTX into all the FUS exposure area, including the tumor and the contralateral hemisphere at the early-time-point. Interestingly, FUS did not improve the long-term accumulation and retention of CTX in the tumor compared with the control group (no FUS). No significant difference in the CTX treatment efficacy, determined by the survival between FUS and non-FUS groups, has been either observed. This result is consistent with the absence of change in the CTX distribution through the GBM tumor after FUS. The neuroinflammation induced by FUS is not significant enough to explain the failure of the CTX delivery improvement. CONCLUSION: All together, these data suggest that the role of FUS combined with µB on the CTX distribution, even after multiple therapeutic sessions and glial cell activation is insufficient to improve survival of GBM mice compared with CTX treatment alone in this model.


Brain Neoplasms , Glioblastoma , Animals , Mice , Blood-Brain Barrier/metabolism , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Cetuximab/metabolism , Cetuximab/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/metabolism , Positron-Emission Tomography
20.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 15.
Article En | MEDLINE | ID: mdl-36559018

Crizotinib is a tyrosine kinase inhibitor approved for the treatment of non-small-cell lung cancer, but it is inefficient on brain metastases. Crizotinib is a substrate of the P-glycoprotein, and non-invasive nuclear imaging can be used to assess the brain penetration of crizotinib. Positron emission tomography (PET) imaging using fluorine-18-labeled crizotinib would be a powerful tool for investigating new strategies to enhance the brain distribution of crizotinib. We have synthesized a spirocyclic hypervalent iodine precursor for the isotopic labeling of crizotinib in a 2.4% yield. Because crizotinib is an enantiomerically pure drug, a chiral separation was performed to afford the (R)-precursor. A two-step radiolabeling process was optimized and automated using the racemic precursor to afford [18F](R,S)-crizotinib in 15 ± 2 radiochemical yield and 103 ± 18 GBq/µmol molar activity. The same radiolabeling process was applied to the (R)-precursor to afford [18F](R)-crizotinib with comparable results. As a proof-of-concept, PET was realized in a single non-human primate to demonstrate the feasibility of [18F](R)-crizotinib in in vivo imaging. Whole-body PET highlighted the elimination routes of crizotinib with negligible penetration in the brain (SUVmean = 0.1). This proof-of-concept paves the way for further studies using [18F](R)-crizotinib to enhance its brain penetration depending on the P-glycoprotein function.

...