Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
Vaccine ; 42(9): 2127-2134, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38458871

OBJECTIVE: Accurately translated health materials are needed to achieve equity in vaccine uptake among U.S. individuals with non-English language preferences. Verbatim translations may not capture the cultural and linguistic vernacular required to understand vaccine hesitancy. We leveraged a community-engaged approach to translate the Vaccine Hesitancy Scale (VHS) into Haitian Creole. METHODS: Following the "WHO Guidelines on Translation and Adaptation of Instruments" and a community-engaged framework, a validated 10-question Vaccine Hesitancy Scale (VHS) underwent forward translation, expert panel review, back translation, and focus group pilot testing. RESULTS: Haitian Creole-speaking translators included two community leaders, one community partner, one study team member, and 13 Haitian, greater Boston-based community members who participated in a focus group to pretest the survey. After four iterations, a linguistic and cultural translation of the VHS was created. CONCLUSION: A community-engaged framework strengthened community partnerships and resulted in a culturally relevant Haitian Creole vaccine hesitancy scale.


Vaccination Hesitancy , Vaccines , Humans , Haiti , Community Participation , Stakeholder Participation , Surveys and Questionnaires
2.
BMC Bioinformatics ; 25(1): 80, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38378440

BACKGROUND: With the increase of the dimensionality in flow cytometry data over the past years, there is a growing need to replace or complement traditional manual analysis (i.e. iterative 2D gating) with automated data analysis pipelines. A crucial part of these pipelines consists of pre-processing and applying quality control filtering to the raw data, in order to use high quality events in the downstream analyses. This part can in turn be split into a number of elementary steps: signal compensation or unmixing, scale transformation, debris, doublets and dead cells removal, batch effect correction, etc. However, assembling and assessing the pre-processing part can be challenging for a number of reasons. First, each of the involved elementary steps can be implemented using various methods and R packages. Second, the order of the steps can have an impact on the downstream analysis results. Finally, each method typically comes with its specific, non standardized diagnostic and visualizations, making objective comparison difficult for the end user. RESULTS: Here, we present CytoPipeline and CytoPipelineGUI, two R packages to build, compare and assess pre-processing pipelines for flow cytometry data. To exemplify these new tools, we present the steps involved in designing a pre-processing pipeline on a real life dataset and demonstrate different visual assessment use cases. We also set up a benchmarking comparing two pre-processing pipelines differing by their quality control methods, and show how the package visualization utilities can provide crucial user insight into the obtained benchmark metrics. CONCLUSION: CytoPipeline and CytoPipelineGUI are two Bioconductor R packages that help building, visualizing and assessing pre-processing pipelines for flow cytometry data. They increase productivity during pipeline development and testing, and complement benchmarking tools, by providing user intuitive insight into benchmarking results.


Data Analysis , Software , Flow Cytometry/methods
3.
Glob Chang Biol ; 29(23): 6772-6793, 2023 Dec.
Article En | MEDLINE | ID: mdl-37578632

In northern peatlands, reduction of Sphagnum dominance in favour of vascular vegetation is likely to influence biogeochemical processes. Such vegetation changes occur as the water table lowers and temperatures rise. To test which of these factors has a significant influence on peatland vegetation, we conducted a 3-year manipulative field experiment in Linje mire (northern Poland). We manipulated the peatland water table level (wet, intermediate and dry; on average the depth of the water table was 17.4, 21.2 and 25.3 cm respectively), and we used open-top chambers (OTCs) to create warmer conditions (on average increase of 1.2°C in OTC plots compared to control plots). Peat drying through water table lowering at this local scale had a larger effect than OTC warming treatment per see on Sphagnum mosses and vascular plants. In particular, ericoid shrubs increased with a lower water table level, while Sphagnum decreased. Microclimatic measurements at the plot scale indicated that both water-level and temperature, represented by heating degree days (HDDs), can have significant effects on the vegetation. In a large-scale complementary vegetation gradient survey replicated in three peatlands positioned along a transitional oceanic-continental and temperate-boreal (subarctic) gradient (France-Poland-Western Siberia), an increase in ericoid shrubs was marked by an increase in phenols in peat pore water, resulting from higher phenol concentrations in vascular plant biomass. Our results suggest a shift in functioning from a mineral-N-driven to a fungi-mediated organic-N nutrient acquisition with shrub encroachment. Both ericoid shrub encroachment and higher mean annual temperature in the three sites triggered greater vascular plant biomass and consequently the dominance of decomposers (especially fungi), which led to a feeding community dominated by nematodes. This contributed to lower enzymatic multifunctionality. Our findings illustrate mechanisms by which plants influence ecosystem responses to climate change, through their effect on microbial trophic interactions.


Sphagnopsida , Tracheophyta , Ecosystem , Siberia , Europe , Soil , Water
4.
J Hazard Mater ; 459: 132169, 2023 10 05.
Article En | MEDLINE | ID: mdl-37523956

This study aimed to determine the trace element accumulation in the soil and plants in an industrial wasteland and to estimate the extent of transfer to humans to measure the effects on and risks to vegetation and human health and find bioindicator plants representative of the levels of the main contaminants. In areas with the highest extractable trace element levels, we observed decreases in plant biodiversity explained by the disappearance of several families, favouring the coverage of tolerant species, such as Urtica dioica and Hedera helix. Trace elements were also found in the leaves of several plants, especially in a dominant species that is poorly studied, Alliaria petiolata. Indeed, this species had the highest contents of Zn (1750 mg.kg-1 DW), Ni (13.1 mg.kg-1 DW), and Cd (18 mg.kg-1 DW) found at the site and is a potential Zn bioindicator since its leaf contents were also representative of the Zn extractable contents in soil (R² = 0.94). The hazard quotient and carcinogen risk revealed that most of the site had an identified or possible risk, mainly due to Pb and As. Native species, especially A. petiolata, could be used in phytoextraction to manage and limit these human and environmental risks.


Metals, Heavy , Soil Pollutants , Trace Elements , Humans , Trace Elements/analysis , Environmental Monitoring , Environmental Biomarkers , Soil/chemistry , Soil Pollutants/analysis , Plants/chemistry , Metals, Heavy/analysis
5.
Mucosal Immunol ; 16(5): 671-684, 2023 Oct.
Article En | MEDLINE | ID: mdl-37506849

Rhinovirus-induced neutrophil extracellular traps (NETs) contribute to acute asthma exacerbations; however, the molecular factors that trigger NETosis in this context remain ill-defined. Here, we sought to implicate a role for IL-33, an epithelial cell-derived alarmin rapidly released in response to infection. In mice with chronic experimental asthma (CEA), but not naïve controls, rhinovirus inoculation induced an early (1 day post infection; dpi) inflammatory response dominated by neutrophils, neutrophil-associated cytokines (IL-1α, IL-1ß, CXCL1), and NETosis, followed by a later, type-2 inflammatory phase (3-7 dpi), characterised by eosinophils, elevated IL-4 levels, and goblet cell hyperplasia. Notably, both phases were ablated by HpARI (Heligmosomoides polygyrus Alarmin Release Inhibitor), which blocks IL-33 release and signalling. Instillation of exogenous IL-33 recapitulated the rhinovirus-induced early phase, including the increased presence of NETs in the airway mucosa, in a PAD4-dependent manner. Ex vivo IL-33-stimulated neutrophils from mice with CEA, but not naïve mice, underwent NETosis and produced greater amounts of IL-1α/ß, IL-4, and IL-5. In nasal samples from rhinovirus-infected people with asthma, but not healthy controls, IL-33 levels correlated with neutrophil elastase and dsDNA. Our findings suggest that IL-33 blockade ameliorates the severity of an asthma exacerbation by attenuating neutrophil recruitment and the downstream generation of NETs.


Asthma , Extracellular Traps , Humans , Animals , Mice , Rhinovirus , Interleukin-33 , Interleukin-4 , Alarmins , Inflammation , Neutrophils
6.
Biochim Biophys Acta Gen Subj ; 1865(4): 129485, 2021 04.
Article En | MEDLINE | ID: mdl-31734459

Microgels offer opportunities for improved delivery of antimicrobial peptides (AMP). To contribute to a foundation for rational design of such systems, we here study the effects of electrostatics on the generation of peptide-carrying microgels. For this, alginate microgels loaded with polymyxin B and cross-linked by Ca2+, were formed by electrostatic complexation using a hydrodynamic focusing three-dimensional (3D)-printed micromixer, varying pH and component concentrations. The structure of the resulting composite nanoparticles was investigated by small-angle X-ray scattering, dynamic light scattering, and z-potential measurements, whereas peptide encapsulation and release was monitored spectrophotometrically. Furthermore, membrane interactions of these systems were assessed by dye leakage assays in model lipid vesicles. Our results indicate that charge contrast between polymyxin B and alginate during microgel formation affects particle size and network dimensions. In particular, while microgels prepared at maximum polymyxin B-alginate charge contrast at pH 5 and 7.4 are characterized by sharp interfaces, those formed at pH 9 are characterized by a more diffuse core, likely caused by a weaker peptide-polymer affinity, and a shell dominated by alginate that shrinks at high CaCl2 concentrations. Quantitatively, however, these effects were relatively minor, as were differences in peptide encapsulation efficiency and electrolyte-induced peptide release. This demonstrates that rather wide charge contrasts allow efficient complexation and particle formation, with polymyxin B encapsulated within the particle interior at low ionic strength, but released at high electrolyte concentration. As a consequence of this, peptide-mediated membrane destabilization were suppressed by microgel incorporation at low ionic strength, but regained after microgel disruption. After particle disruption at high ionic strength, however, some polymyxin B was found to remain bound to alginate chains from the disrupted composite microgel particles, resulting in partial loss in membrane interactions, compared to the free peptide.


Alginates/chemistry , Anti-Bacterial Agents/administration & dosage , Liposomes/chemistry , Microgels/chemistry , Polymyxin B/administration & dosage , Anti-Bacterial Agents/chemistry , Bacteria/chemistry , Biomimetic Materials/chemistry , Drug Liberation , Particle Size , Polymyxin B/chemistry , Static Electricity
7.
Sci Total Environ ; 754: 141931, 2021 Feb 01.
Article En | MEDLINE | ID: mdl-33254862

Peatlands are habitats for a range of fragile flora and fauna species. Their eco-physicochemical characteristics make them as outstanding global carbon and water storage systems. These ecosystems occupy 3% of the worldwide emerged land surface but represent 30% of the global organic soil carbon and 10% of the global fresh water volumes. In such systems, carbon speciation depends to a large extent on specific redox conditions which are mainly governed by the depth of the water table. Hence, understanding their hydrological variability, that conditions both their ecological and biogeochemical functions, is crucial for their management, especially when anticipating their future evolution under climate change. This study illustrates how long-term monitoring of basic hydro-meteorological parameters combined with statistical modeling can be used as a tool to evaluate i) the horizontal (type of peat), ii) vertical (acrotelm/catotelm continuum) and iii) future hydrological variability. Using cross-correlations between meteorological data (precipitation, potential evapotranspiration) and water table depth (WTD), we primarily highlight the spatial heterogeneity of hydrological reactivity across the Sphagnum-dominated Frasne peatland (French Jura Mountain). Then, a multiple linear regression model allows performing hydrological projections until 2100, according to regionalized IPCC RCP4.5 and 8.5 scenarios. Although WTD remains stable during the first half of 21th century, seasonal trends beyond 2050 show lower WTD in winter and markedly greater WTD in summer. In particular, after 2050, more frequent droughts in summer and autumn should occur, increasing WTD. These projections are completed with risk evaluations for peatland droughts until 2100 that appear to be increasing especially for transition seasons, i.e. May-June and September-October. Comparing these trends with previous evaluations of phenol concentrations in water throughout the vegetative period, considered as a proxy of plant functioning intensity, highlights that these hydrological modifications during transitional seasons could be a great ecological perturbation, especially by affecting Sphagnum metabolism.

8.
Environ Monit Assess ; 192(11): 673, 2020 Oct 03.
Article En | MEDLINE | ID: mdl-33011855

Plant responses to heavy metals and their storage constitute a crucial step to understand the environmental impacts of metallic trace elements (MTEs). In controlled experiments, we previously demonstrated the tolerance and resilience of Japanese knotweed to soil artificial polymetallic contamination. Using the same experimental design, we tested here the effect of three individual MTEs on Fallopia × bohemica performance traits. Rhizome fragments from three different sites (considered as distinct morphotypes) were grown in a greenhouse for 1 month on a prairial soil artificially contaminated with either Cd, Cr (VI) or Zn at concentrations corresponding to relatively highly polluted soils. Our results confirmed the high tolerance of Bohemian knotweed to metal stress, though, plant response to MTE pollution was dependant on MTE identity. Bohemian knotweed was stimulated by Cr (VI) (increased root and aerial masses), did not display any measurable change in performance traits under Cd at the high dose of 10 mg kg-1, and uptook all MTEs in its rhizome, but only Zn was transferred to its aerial parts. We also highlighted changes in root secondary metabolism that were more accentuated with Zn, including the increase of anthraquinone, stilbene and biphenyl derivatives. These results compared to multi-contamination experiments previously published suggest complex interactions between metals and plant, depending principally on metal identity and also suggest a potential role of soil microbes in the interactions.


Fallopia , Soil Pollutants/analysis , Soil Pollutants/toxicity , Cadmium , Environmental Monitoring , Secondary Metabolism , Zinc
9.
Nat Immunol ; 20(11): 1444-1455, 2019 11.
Article En | MEDLINE | ID: mdl-31591573

Low exposure to microbial products, respiratory viral infections and air pollution are major risk factors for allergic asthma, yet the mechanistic links between such conditions and host susceptibility to type 2 allergic disorders remain unclear. Through the use of single-cell RNA sequencing, we characterized lung neutrophils in mice exposed to a pro-allergic low dose of lipopolysaccharide (LPS) or a protective high dose of LPS before exposure to house dust mites. Unlike exposure to a high dose of LPS, exposure to a low dose of LPS instructed recruited neutrophils to upregulate their expression of the chemokine receptor CXCR4 and to release neutrophil extracellular traps. Low-dose LPS-induced neutrophils and neutrophil extracellular traps potentiated the uptake of house dust mites by CD11b+Ly-6C+ dendritic cells and type 2 allergic airway inflammation in response to house dust mites. Neutrophil extracellular traps derived from CXCR4hi neutrophils were also needed to mediate allergic asthma triggered by infection with influenza virus or exposure to ozone. Our study indicates that apparently unrelated environmental risk factors can shape recruited lung neutrophils to promote the initiation of allergic asthma.


Air Pollutants/immunology , Allergens/immunology , Asthma/immunology , Extracellular Traps/metabolism , Neutrophils/immunology , Animals , Dendritic Cells/immunology , Disease Models, Animal , Environmental Exposure/adverse effects , Extracellular Traps/immunology , Female , Humans , Lipopolysaccharides/immunology , Lung/cytology , Lung/immunology , Mice , Neutrophils/metabolism , Orthomyxoviridae/immunology , Ozone/immunology , Pyroglyphidae/immunology , Receptors, CXCR4/immunology , Receptors, CXCR4/metabolism , Up-Regulation
10.
J Chem Ecol ; 44(12): 1146-1157, 2018 Dec.
Article En | MEDLINE | ID: mdl-30294748

Sphagnum mosses mediate long-term carbon accumulation in peatlands. Given their functional role as keystone species, it is important to consider their responses to ecological gradients and environmental changes through the production of phenolics. We compared the extent to which Sphagnum phenolic production was dependent on species, microhabitats and season, and how surrounding dwarf shrubs responded to Sphagnum phenolics. We evaluated the phenolic profiles of aqueous extracts of Sphagnum fallax and Sphagnum magellanicum over a 6-month period in two microhabitats (wet lawns versus dry hummocks) in a French peatland. Phenolic profiles of water-soluble extracts were measured by UHPLC-QTOF-MS. Andromeda polifolia mycorrhizal colonization was quantified by assessing the intensity of global root cortex colonization. Phenolic profiles of both Sphagnum mosses were species-, season- and microhabitat- dependant. Sphagnum-derived acids were the phenolics mostly recovered; relative quantities were 2.5-fold higher in S. fallax than in S. magellanicum. Microtopography and vascular plant cover strongly influenced phenolic profiles, especially for minor metabolites present in low abundance. Higher mycorrhizal colonization of A. polifolia was found in lawns as compared to hummocks. Mycorrhizal abundance, in contrast to environmental parameters, was correlated with production of minor phenolics in S. fallax. Our results highlight the close interaction between mycorrhizae such as those colonizing A. polifolia and the release of Sphagnum phenolic metabolites and suggest that Sphagnum-derived acids and minor phenolics play different roles in this interaction. This work provides new insight into the ecological role of Sphagnum phenolics by proposing a strong association with mycorrhizal colonization of shrubs.


Ericaceae/growth & development , Mycorrhizae/growth & development , Sphagnopsida/chemistry , Chromatography, High Pressure Liquid , Ecosystem , Ericaceae/microbiology , Phenols/analysis , Phenols/chemistry , Plant Roots/metabolism , Plant Roots/microbiology , Principal Component Analysis , Seasons , Soil/chemistry , Spectrometry, Mass, Electrospray Ionization , Sphagnopsida/metabolism , Water/chemistry
11.
Nat Commun ; 9(1): 2229, 2018 06 08.
Article En | MEDLINE | ID: mdl-29884817

Inhaled corticosteroids (ICS) have limited efficacy in reducing chronic obstructive pulmonary disease (COPD) exacerbations and increase pneumonia risk, through unknown mechanisms. Rhinoviruses precipitate most exacerbations and increase susceptibility to secondary bacterial infections. Here, we show that the ICS fluticasone propionate (FP) impairs innate and acquired antiviral immune responses leading to delayed virus clearance and previously unrecognised adverse effects of enhanced mucus, impaired antimicrobial peptide secretion and increased pulmonary bacterial load during virus-induced exacerbations. Exogenous interferon-ß reverses these effects. FP suppression of interferon may occur through inhibition of TLR3- and RIG-I virus-sensing pathways. Mice deficient in the type I interferon-α/ß receptor (IFNAR1-/-) have suppressed antimicrobial peptide and enhanced mucin responses to rhinovirus infection. This study identifies type I interferon as a central regulator of antibacterial immunity and mucus production. Suppression of interferon by ICS during virus-induced COPD exacerbations likely mediates pneumonia risk and raises suggestion that inhaled interferon-ß therapy may protect.


Adrenal Cortex Hormones/pharmacology , Bacterial Load/drug effects , Immunity, Innate/drug effects , Mucus/drug effects , Pulmonary Disease, Chronic Obstructive/prevention & control , Rhinovirus/drug effects , Administration, Inhalation , Adrenal Cortex Hormones/administration & dosage , Adrenal Cortex Hormones/immunology , Animals , Bacterial Infections/microbiology , Bacterial Infections/prevention & control , Cell Line , Fluticasone/administration & dosage , Fluticasone/immunology , Fluticasone/pharmacology , Humans , Lung/drug effects , Lung/microbiology , Lung/virology , Mice, Knockout , Mucus/microbiology , Mucus/virology , Picornaviridae Infections/prevention & control , Picornaviridae Infections/virology , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Disease, Chronic Obstructive/virology , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Rhinovirus/immunology , Rhinovirus/physiology
13.
Nat Med ; 23(6): 681-691, 2017 06.
Article En | MEDLINE | ID: mdl-28459437

Respiratory viral infections represent the most common cause of allergic asthma exacerbations. Amplification of the type-2 immune response is strongly implicated in asthma exacerbation, but how virus infection boosts type-2 responses is poorly understood. We report a significant correlation between the release of host double-stranded DNA (dsDNA) following rhinovirus infection and the exacerbation of type-2 allergic inflammation in humans. In a mouse model of allergic airway hypersensitivity, we show that rhinovirus infection triggers dsDNA release associated with the formation of neutrophil extracellular traps (NETs), known as NETosis. We further demonstrate that inhibiting NETosis by blocking neutrophil elastase or by degrading NETs with DNase protects mice from type-2 immunopathology. Furthermore, the injection of mouse genomic DNA alone is sufficient to recapitulate many features of rhinovirus-induced type-2 immune responses and asthma pathology. Thus, NETosis and its associated extracellular dsDNA contribute to the pathogenesis and may represent potential therapeutic targets of rhinovirus-induced asthma exacerbations.


Asthma/immunology , Cytokines/immunology , DNA/immunology , Extracellular Traps/immunology , Picornaviridae Infections/immunology , Respiratory Hypersensitivity/immunology , Respiratory Tract Infections/immunology , Th2 Cells/immunology , Adult , Animals , Case-Control Studies , Dermatophagoides farinae/immunology , Disease Models, Animal , Female , Humans , Interferon-gamma/immunology , Interleukin-13/immunology , Interleukin-4/immunology , Interleukin-5/immunology , Male , Mice , Middle Aged , Rhinovirus , Young Adult
14.
Immunity ; 46(3): 457-473, 2017 03 21.
Article En | MEDLINE | ID: mdl-28329706

Living in a microbe-rich environment reduces the risk of developing asthma. Exposure of humans or mice to unmethylated CpG DNA (CpG) from bacteria reproduces these protective effects, suggesting a major contribution of CpG to microbe-induced asthma resistance. However, how CpG confers protection remains elusive. We found that exposure to CpG expanded regulatory lung interstitial macrophages (IMs) from monocytes infiltrating the lung or mobilized from the spleen. Trafficking of IM precursors to the lung was independent of CCR2, a chemokine receptor required for monocyte mobilization from the bone marrow. Using a mouse model of allergic airway inflammation, we found that adoptive transfer of IMs isolated from CpG-treated mice recapitulated the protective effects of CpG when administered before allergen sensitization or challenge. IM-mediated protection was dependent on IL-10, given that Il10-/- CpG-induced IMs lacked regulatory effects. Thus, the expansion of regulatory lung IMs upon exposure to CpG might underlie the reduced risk of asthma development associated with a microbe-rich environment.


Chemotaxis, Leukocyte/immunology , DNA, Bacterial/immunology , Hypersensitivity/immunology , Macrophages, Alveolar/immunology , Respiratory Hypersensitivity/immunology , Animals , Disease Models, Animal , Flow Cytometry , Macrophage Activation/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Oligodeoxyribonucleotides/immunology , Spleen/immunology
15.
J Virol ; 91(9)2017 05 01.
Article En | MEDLINE | ID: mdl-28228588

Picornavirus replication is known to cause extensive remodeling of Golgi and endoplasmic reticulum membranes, and a number of the host proteins involved in the viral replication complex have been identified, including oxysterol binding protein (OSBP) and phosphatidylinositol 4-kinase III beta (PI4KB). Since both OSBP and PI4KB are substrates for protein kinase D (PKD) and PKD is known to be involved in the control of Golgi membrane vesicular and lipid transport, we hypothesized that PKD played a role in viral replication. We present multiple lines of evidence in support of this hypothesis. First, infection of HeLa cells with human rhinovirus (HRV) induced the phosphorylation of PKD. Second, PKD inhibitors reduced HRV genome replication, protein expression, and titers in a concentration-dependent fashion and also blocked the replication of poliovirus (PV) and foot-and-mouth disease virus (FMDV) in a variety of cells. Third, HRV replication was significantly reduced in HeLa cells overexpressing wild-type and mutant forms of PKD1. Fourth, HRV genome replication was reduced in HAP1 cells in which the PKD1 gene was knocked out by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9. Although we have not identified the molecular mechanism through which PKD regulates viral replication, our data suggest that this is not due to enhanced interferon signaling or an inhibition of clathrin-mediated endocytosis, and PKD inhibitors do not need to be present during viral uptake. Our data show for the first time that targeting PKD with small molecules can inhibit the replication of HRV, PV, and FMDV, and therefore, PKD may represent a novel antiviral target for drug discovery.IMPORTANCE Picornaviruses remain an important family of human and animal pathogens for which we have a very limited arsenal of antiviral agents. HRV is the causative agent of the common cold, which in itself is a relatively trivial infection; however, in asthma and chronic obstructive pulmonary disease (COPD) patients, this virus is a major cause of exacerbations resulting in an increased use of medication, worsening symptoms, and, frequently, hospital admission. Thus, HRV represents a substantial health care and economic burden for which there are no approved therapies. We sought to identify a novel host target as a potential anti-HRV therapy. HRV infection induces the phosphorylation of PKD, and inhibitors of this kinase effectively block HRV replication at an early stage of the viral life cycle. Moreover, PKD inhibitors also block PV and FMDV replication. This is the first description that PKD may represent a target for antiviral drug discovery.


DNA Replication/genetics , Foot-and-Mouth Disease Virus/growth & development , Poliovirus/growth & development , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/genetics , Rhinovirus/growth & development , Rhinovirus/genetics , Virus Replication/genetics , Animals , Cell Line, Tumor , Cricetinae , DNA, Viral/biosynthesis , Foot-and-Mouth Disease Virus/genetics , Gene Knockout Techniques , HeLa Cells , Humans , Interferon Type I/metabolism , Phosphorylation , Poliovirus/genetics , Protein Kinase C/metabolism , Pyrimidines/pharmacology
16.
Environ Pollut ; 214: 8-16, 2016 Jul.
Article En | MEDLINE | ID: mdl-27061470

Trace elements (TEs) transported by atmospheric fluxes can negatively impact isolated ecosystems. Modelling based on moss-borne TE accumulation makes tracking TE deposition in remote areas without monitoring stations possible. Using a single moss species from ombrotrophic hummock peatlands reinforces estimate quality. This study used a validated geomatic model of particulate matter dispersion to identify the origin of Cd, Zn, Pb and Cu accumulated in Sphagnum capillifolium and the distance transported from their emission sources. The residential and industrial sectors of particulate matter emissions showed the highest correlations with the TEs accumulated in S. capillifolium (0.28(Zn)-0.56(Cu)) and (0.27(Zn)-0.47(Cu), respectively). Distances of dispersion varied depending on the sector of emissions and the considered TE. The greatest transportation distances for mean emissions values were found in the industrial (10.6 km when correlating with all TEs) and roads sectors (13 km when correlating with Pb). The residential sector showed the shortest distances (3.6 km when correlating with Cu, Cd, and Zn). The model presented here is a new tool for evaluating the efficacy of air pollution abatement policies in non-monitored areas and provides high-resolution (200 × 200 m) maps of TE accumulation that make it possible to survey the potential impacts of TEs on isolated ecosystems.


Air Pollutants/analysis , Sphagnopsida/chemistry , Trace Elements/analysis , Air Pollution , Environmental Monitoring , Industry , Models, Theoretical , Particulate Matter/analysis , Soil
17.
Semin Thromb Hemost ; 42(3): 282-91, 2016 Apr.
Article En | MEDLINE | ID: mdl-26871254

Dense granule disorder is one of the most common platelet abnormalities, resulting from dense granule deficiency or secretion defect. This study was aimed to evaluate the clinical usefulness of the flow cytometric combination of mepacrine uptake/release assay and CD63 expression detection in the management of patients with suspected dense granule disorder. Over a period of 5 years, patients with abnormal platelet aggregation and/or reduced adenosine triphosphate (ATP) secretion suggestive of dense granule disorder were consecutively enrolled. The flow cytometric assays were systematically performed to further investigate dense granule functionality. Among the 26 included patients, 18 cases showed impaired mepacrine uptake/release and reduced CD63 expression on activated platelets, consistent with δ-storage pool deficiency (SPD). Another seven patients showed decrease in mepacrine release and CD63 expression but mepacrine uptake was normal, indicating secretion defect rather than δ-SPD. Unfortunately, ATP secretion could not be measured in 7 out of the 26 patients due to insufficient sample and/or severe thrombocytopenia. This test combination provides a rapid and effective method to detect the heterogeneous abnormalities of platelet dense granule by distinguishing between storage and release defects. This combination is particularly advantageous for severely thrombocytopenic patients and pediatric patients in which only minimal sample is required.


Blood Platelets/metabolism , Flow Cytometry/methods , Platelet Storage Pool Deficiency/diagnosis , Quinacrine/metabolism , Tetraspanin 30/metabolism , Adenosine Triphosphate/metabolism , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Platelet Activation , Platelet Aggregation , Platelet Count , Platelet Function Tests/methods , Platelet Storage Pool Deficiency/metabolism , Quinacrine/pharmacokinetics , Reproducibility of Results , Sensitivity and Specificity , Young Adult
18.
Lancet Respir Med ; 2(3): 226-37, 2014 Mar.
Article En | MEDLINE | ID: mdl-24621684

Since the discovery of interleukin 33 as the adopted ligand for the then orphan ST2 receptor, many studies have implicated this cytokine in the pathogenesis of respiratory allergy and asthma. Although some extracellular functions of interleukin 33 have been well defined, many aspects of the regulation and secretion of this cytokine need clarification. Interleukin 33 has been identified as a trigger of T-helper-type-2 cell differentiation, which by interacting with both the innate and the adaptive immune systems, can drive allergy and asthma pathogenesis. However, induction of interleukin 33 by both environmental and endogenous triggers implies a possible role during infection and tissue damage. Further understanding of the biology of interleukin 33 will clarify its possible role in future therapeutic interventions.


Asthma/etiology , Hypersensitivity/etiology , Interleukins/physiology , Asthma/pathology , Asthma/therapy , Humans , Hypersensitivity/pathology , Hypersensitivity/therapy , Interleukin-33
19.
J Agric Food Chem ; 62(13): 2946-55, 2014 Apr 02.
Article En | MEDLINE | ID: mdl-24606566

The management of dissolved and headspace gases during bottling and the choice of packaging are both key factors for the shelf life of wine. Two kinds of 75 cL polyethylene terephthalate (PET) bottles (with or without recycled PET) were compared to glass bottles filled with a rosé wine, closed with the same screwcaps and stored upright at 20 °C in light or in the dark. Analytical monitoring (aphrometric pressure, headspace volume, O2, N2, CO2, and SO2) was carried out for 372 days. After the consumption of O2 trapped during bottling, the total O2 content in glass bottles remained stable. A substantial decrease of CO2 and SO2 concentration and an increase of O2 concentration were observed in the PET bottles after 6 months because of the considerable gas permeability of monolayer PET. Light accelerated O2 consumption during the early months. Finally, the kinetic monitoring of partial pressures in gas and liquid phases in bottles showed contrasting behavior of O2 and N2 in comparison with CO2.


Carbon Dioxide/analysis , Food Packaging/instrumentation , Nitrogen/analysis , Oxygen/analysis , Sulfites/analysis , Wine/analysis , Food Storage/methods , Glass , Polyethylene Glycols , Polyethylene Terephthalates , Temperature
...