Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 26(2): 194-206, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38332353

RESUMEN

Mitochondrial DNA (mtDNA) encodes essential subunits of the oxidative phosphorylation system, but is also a major damage-associated molecular pattern (DAMP) that engages innate immune sensors when released into the cytoplasm, outside of cells or into circulation. As a DAMP, mtDNA not only contributes to anti-viral resistance, but also causes pathogenic inflammation in many disease contexts. Cells experiencing mtDNA stress caused by depletion of the mtDNA-packaging protein, transcription factor A, mitochondrial (TFAM) or during herpes simplex virus-1 infection exhibit elongated mitochondria, enlargement of nucleoids (mtDNA-protein complexes) and activation of cGAS-STING innate immune signalling via mtDNA released into the cytoplasm. However, the relationship among aberrant mitochondria and nucleoid dynamics, mtDNA release and cGAS-STING activation remains unclear. Here we show that, under a variety of mtDNA replication stress conditions and during herpes simplex virus-1 infection, enlarged nucleoids that remain bound to TFAM exit mitochondria. Enlarged nucleoids arise from mtDNA experiencing replication stress, which causes nucleoid clustering via a block in mitochondrial fission at a stage when endoplasmic reticulum actin polymerization would normally commence, defining a fission checkpoint that ensures mtDNA has completed replication and is competent for segregation into daughter mitochondria. Chronic engagement of this checkpoint results in enlarged nucleoids trafficking into early and then late endosomes for disposal. Endosomal rupture during transit through this endosomal pathway ultimately causes mtDNA-mediated cGAS-STING activation. Thus, we propose that replication-incompetent nucleoids are selectively eliminated by an adaptive mitochondria-endosomal quality control pathway that is prone to innate immune system activation, which might represent a therapeutic target to prevent mtDNA-mediated inflammation during viral infection and other pathogenic states.


Asunto(s)
ADN Mitocondrial , Proteínas de Unión al ADN , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Replicación del ADN , Endosomas/metabolismo , Nucleotidiltransferasas/genética , Inflamación/genética , Proteínas Mitocondriales/metabolismo
2.
Vet Comp Oncol ; 21(4): 726-738, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37724007

RESUMEN

Pharmacologic inhibition of autophagy can be achieved using lysosomotropic agents such as hydroxychloroquine (HCQ) that interfere with fusion of the autophagosome to the lysosome thus preventing completion of the recycling process. The goal of the present study is to determine the sensitivity of eight canine (cOSA) and four human (hOSA) osteosarcoma tumour cell lines to antiproliferative and cytotoxic effects of lysosomal autophagy inhibitors, and to compare these results to the autophagy-dependence measured using a CRISPR/Cas9 live-cell imaging assay in OSA and other tumour cell lines. Antiproliferative and cytotoxic response to HCQ and Lys05 was determined using live cell imaging and YOYO-1 staining. CRISPR/Cas9 live cell imaging screen was done using species specific guide RNA's and transfection of reagents into cells. Response to autophagy core genes was compared to response to an essential (PCNA) and non-essential (FOXO3A) gene. cOSA and hOSA cell lines showed similar antiproliferative and cytotoxic responses to HCQ and Lys05 with median lethal dose (Dm ) values ranging from 4.6-15.8 µM and 2.1-5.1 µM for measures of anti-proliferative response, respectively. A relationship was observed between antiproliferative responses to HCQ and Lys05 and VPS34 CRISPR score with Dm values correlating with VPS34 response (r = 0.968 and 0.887) in a species independent manner. The results show that a subset of cOSA and hOSA cell lines are autophagy-dependent and sensitive to HCQ at pharmacologically-relevant exposures.


Asunto(s)
Antineoplásicos , Enfermedades de los Perros , Osteosarcoma , Animales , Perros , Humanos , Enfermedades de los Perros/tratamiento farmacológico , ARN Guía de Sistemas CRISPR-Cas , Hidroxicloroquina/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/veterinaria , Autofagia
3.
Endocr Rev ; 44(4): 629-646, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631217

RESUMEN

Autophagy plays a complex role in several cancer types, including endocrine-dependent cancers, by fueling cellular metabolism and clearing damaged substrates. This conserved recycling process has a dual function across tumor types where it can be tumor suppressive at early stages but tumor promotional in established disease. This review highlights the controversial roles of autophagy in endocrine-dependent tumors regarding cancer initiation, tumorigenesis, metastasis, and treatment response. We summarize clinical trial results thus far and highlight the need for additional mechanistic, preclinical, and clinical studies in endocrine-dependent tumors, particularly in breast cancer and prostate cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Carcinogénesis , Autofagia/fisiología
4.
Structure ; 30(8): 1055-1061.e7, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35640615

RESUMEN

SQSTM1/p62 is an autophagic receptor that plays a major role in mediating stress and innate immune responses. Preclinical studies identified p62 as a target of the prototype innate defense regulator (IDR); however, the molecular mechanism of this process remains unclear. Here, we describe the structural basis and biological consequences of the interaction of p62 with the next generation of IDRs, dusquetide. Both electrostatic and hydrophobic contacts drive the formation of the complex between dusquetide and the ZZ domain of p62. We show that dusquetide penetrates the cell membrane and associates with p62 in vivo. Dusquetide binding modulates the p62-RIP1 complex, increases p38 phosphorylation, and enhances CEBP/B expression without activating autophagy. Our findings provide molecular details underlying the IDR action that may help in the development of new strategies to pharmacologically target p62.


Asunto(s)
Inmunidad Innata , Oligopéptidos , Autofagia , Oligopéptidos/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo
5.
Mol Cell Oncol ; 8(5): 1984162, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34859144

RESUMEN

Autophagy is a central recycling process, and it plays a complex role in cancer. We discovered that when autophagy is blocked, cancer cells compensate by increasing mitochondrial-derived vesicles. However, there are many unanswered questions remaining, particularly in the context of the dual roles of autophagy in cancer.

6.
J Cell Sci ; 134(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34622922

RESUMEN

The Autophagy, Inflammation and Metabolism (AIM) Center organized a globally accessible, virtual eSymposium during the COVID-19 pandemic in 2020. The conference included presentations from scientific leaders, as well as a career discussion panel, and provided a much-needed platform for early-career investigators (ECIs) to showcase their research in autophagy. This Perspective summarizes the science presented by the ECIs during the event and discusses the lessons learned from a virtual meeting of this kind during the pandemic. The meeting was a learning experience for all involved, and the ECI participants herein offer their thoughts on the pros and cons of virtual meetings as a modality, either as standalone or hybrid events, with a view towards the post-pandemic world.


Asunto(s)
COVID-19 , Pandemias , Autofagia , Humanos , Inflamación , SARS-CoV-2
7.
Dev Cell ; 56(14): 2029-2042.e5, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34171288

RESUMEN

Mitochondria are critical metabolic and signaling hubs, and dysregulated mitochondrial homeostasis is implicated in many diseases. Degradation of damaged mitochondria by selective GABARAP/LC3-dependent macro-autophagy (mitophagy) is critical for maintaining mitochondrial homeostasis. To identify alternate forms of mitochondrial quality control that functionally compensate if mitophagy is inactive, we selected for autophagy-dependent cancer cells that survived loss of LC3-dependent autophagosome formation caused by inactivation of ATG7 or RB1CC1/FIP200. We discovered rare surviving autophagy-deficient clones that adapted to maintain mitochondrial homeostasis after gene inactivation and identified two enhanced mechanisms affecting mitochondria including mitochondrial dynamics and mitochondrial-derived vesicles (MDVs). To further understand these mechanisms, we quantified MDVs via flow cytometry and confirmed an SNX9-mediated mechanism necessary for flux of MDVs to lysosomes. We show that the autophagy-dependent cells acquire unique dependencies on these processes, indicating that these alternate forms of mitochondrial homeostasis compensate for loss of autophagy to maintain mitochondrial health.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/patología , Dinámicas Mitocondriales , Mitofagia , Nexinas de Clasificación/metabolismo , Vesículas Transportadoras/fisiología , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Endosomas/metabolismo , Humanos , Lisosomas , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/metabolismo , Nexinas de Clasificación/genética
9.
Cancers (Basel) ; 12(10)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053661

RESUMEN

Invasive lobular carcinoma of the breast (ILC) is strongly estrogen-driven and represents a unique context for estrogen receptor (ER) signaling. In ILC, ER controls the expression of the Wnt ligand WNT4, which is critical for endocrine response and anti-estrogen resistance. However, signaling mediated by WNT4 is cell type- and tissue-specific, and has not been explored in ILC. We utilized reverse phase protein array (RPPA) to characterize ER and WNT4-driven signaling in ILC cells and identified that WNT4 mediates downstream mTOR signaling via phosphorylation of S6 Kinase. Additionally, ER and WNT4 control levels of MCL-1, which is associated with regulation of mitochondrial function. In this context, WNT4 knockdown led to decreased ATP production and increased mitochondrial fragmentation. WNT4 regulation of both mTOR signaling and MCL-1 were also observed in anti-estrogen resistant models of ILC. We identified that high WNT4 expression is associated with similar mTOR pathway activation in ILC and serous ovarian cancer tumors, suggesting that WNT4 signaling is active in multiple tumor types. The identified downstream pathways offer insight into WNT4 signaling and represent potential targets to overcome anti-estrogen resistance for patients with ILC.

10.
Autophagy ; 16(7): 1332-1340, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32160093

RESUMEN

Macroautophagy/autophagy degrades proteins and organelles to generate macromolecular building blocks. As such, some cancer cells are particularly dependent on autophagy. In a previous paper, we found that even highly autophagy-dependent cancer cells can adapt to circumvent autophagy inhibition. However, it remains unclear if autophagy-dependent cancer cells could survive the complete elimination of autophagosome formation. We extended our previous findings to show that knockout (KO) of both the upstream autophagy regulator RB1CC1/FIP200 and the downstream regulator and mediator of LC3 conjugation, ATG7, strongly inhibits growth in highly autophagy-dependent cells within one week of editing. However, rare clones survived the loss of ATG7 or RB1CC1 and maintained growth even under autophagy-inducing conditions. Autophagy-dependent cells circumvent the complete loss of autophagy that is mediated by RB1CC1 KO, similar to the loss of ATG7, by upregulating NFE2L2/NRF2 signaling. These results indicate that cancer cell lines could adapt to the complete loss of autophagy by changing their biology to adopt alternative ways of dealing with autophagy-mediated cellular functions. ABBREVIATIONS: CGS: CRISPR growth score; CQ: chloroquine; CRISPR: clustered regularly interspaced short palindromic repeats; EBSS: Earl's balanced salt solution; EEF2: eukaryotic translation elongation factor 2; FOXO3/FOXO3a: forkhead box O3; GFP: green fluorescent protein; KEAP1: kelch Like ECH associated protein 1; KO: knockout; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; NLS: nuclear localization signal; PCNA: proliferating cell nuclear antigen; PE: phosphatidylethanolamine; POLR2A: RNA polymerase II subunit A; PTEN: phosphatase and tensin homolog; ROS: reactive oxygen species; SNARE: soluble NSF attachment protein receptor; SQSTM1: sequestosome 1; STX17: syntaxin 17; TBHP: tert-butyl hydroperoxide; ULK1: unc-51 like autophagy activating kinase 1; ULK2: unc-51 like autophagy activating kinase 2; WT: wild type.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Línea Celular Tumoral , Femenino , Humanos , Factor 2 Relacionado con NF-E2/metabolismo
11.
J Cell Biol ; 219(1)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31753861

RESUMEN

Autophagy is intricately linked with many intracellular signaling pathways, particularly nutrient-sensing mechanisms and cell death signaling cascades. In cancer, the roles of autophagy are context dependent. Tumor cell-intrinsic effects of autophagy can be both tumor suppressive and tumor promotional. Autophagy can therefore not only activate and inhibit cell death, but also facilitate the switch between cell death mechanisms. Moreover, autophagy can play opposing roles in the tumor microenvironment via non-cell-autonomous mechanisms. Preclinical data support a tumor-promotional role of autophagy in established tumors and during cancer therapy; this has led to the launch of dozens of clinical trials targeting autophagy in multiple cancer types. However, many questions remain: which tumors and genetic backgrounds are the most sensitive to autophagy inhibition, and which therapies should be combined with autophagy inhibitors? Additionally, since cancer cells are under selective pressure and are prone to adaptation, particularly after treatment, it is unclear if and how cells adapt to autophagy inhibition. Here we review recent literature addressing these issues.


Asunto(s)
Adaptación Fisiológica , Autofagia , Transformación Celular Neoplásica/patología , Neoplasias/patología , Transducción de Señal , Microambiente Tumoral , Animales , Muerte Celular , Humanos
12.
Cell Cycle ; 18(24): 3421-3431, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31736401

RESUMEN

Autophagy is cellular recycling process that plays a complex role in cancer. Pre-clinical studies indicating a pro-tumorigenic role of autophagy have led to the launch of dozens of clinical trials combining autophagy inhibition with other standard of care therapies in different tumor types. A recent publication utilized a novel, acute, CRISPR/Cas9 assay to identify cancer cell lines that are exquisitely sensitive to loss of core autophagy genes within the first 7 days. However, weeks later, rare populations of originally autophagy dependent cells were found that could circumvent autophagy inhibition. Analysis of these rare clones revealed that in the process of circumventing loss of autophagy, the cells upregulated NRF2 signaling to maintain protein homeostasis and consequently become more sensitive to proteasome inhibition as well as knock down of NRF2. This review highlights recent publications regarding the role of autophagy in cancer and potential mechanisms cancer cells may be able to commandeer to circumvent autophagy inhibition. We hope to make significant clinical advances by understanding if and when cancer cells will become resistant to autophagy inhibition, and pre-clinical studies may be able to provide insight into the best combinatorial therapies to prevent tumor relapse while on autophagy inhibitors.


Asunto(s)
Autofagia/genética , Carcinogénesis/genética , Factor 2 Relacionado con NF-E2/genética , Neoplasias/genética , Sistemas CRISPR-Cas/genética , Linaje de la Célula/genética , Evolución Clonal/genética , Humanos , Neoplasias/patología , Neoplasias/terapia , Transducción de Señal/genética
13.
Dev Cell ; 50(6): 690-703.e6, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31378590

RESUMEN

While autophagy is thought to be an essential process in some cancer cells, it is unknown if or how such cancer cells can circumvent autophagy inhibition. To address this, we developed a CRISPR/Cas9 assay with dynamic live-cell imaging to measure acute effects of knockout (KO) of autophagy genes compared to known essential and non-essential genes. In some cancer cells, autophagy is as essential for cancer cell growth as mRNA transcription or translation or DNA replication. However, even these highly autophagy-dependent cancer cells evolve to circumvent loss of autophagy by upregulating NRF2, which is necessary and sufficient for autophagy-dependent cells to circumvent ATG7 KO and maintain protein homeostasis. Importantly, however, this adaptation increases susceptibly to proteasome inhibitors. These studies identify a common mechanism of acquired resistance to autophagy inhibition and show that selection to avoid tumor cell dependency on autophagy creates new, potentially actionable cancer cell susceptibilities.


Asunto(s)
Adaptación Fisiológica , Autofagia , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal , Regulación hacia Arriba , Adaptación Fisiológica/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteína 7 Relacionada con la Autofagia/metabolismo , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Clonales , Técnicas de Inactivación de Genes , Genes Esenciales , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Ribonucleoproteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
14.
Autophagy ; 15(4): 735-737, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30653391

RESUMEN

SQSTM1/p62 facilitates responses to various cellular stresses and has been implicated in human diseases. This protein functions as a major cytoplasmic signaling hub and has multiple binding partners, including arginylated (Nt-R) proteins that are recognized by the ZZ domain of SQSTM1/p62 (SQSTM1/p62ZZ). We have determined the molecular mechanism of Nt-R recognition using a combination of biochemical and NMR approaches and obtained the crystal structure of SQSTM1/p62ZZ in complex with Nt-R. We found that binding of SQSTM1/p62ZZ to Nt-R induces SQSTM1/p62 puncta formation and macroautophagy/autophagy and identified a regulatory linker (RL) region of SQSTM1/p62 that associates with SQSTM1/p62ZZ in vitro. Our findings suggest a mechanism for SQSTM1/p62 autoregulation that can be essential in mediating autophagy.


Asunto(s)
Autofagia , Humanos , Proteína Sequestosoma-1 , Transducción de Señal
15.
Nat Commun ; 9(1): 4373, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30349045

RESUMEN

Autophagic receptor p62 is a critical mediator of cell detoxification, stress response, and metabolic programs and is commonly deregulated in human diseases. The diverse functions of p62 arise from its ability to interact with a large set of ligands, such as arginylated (Nt-R) substrates. Here, we describe the structural mechanism for selective recognition of Nt-R by the ZZ domain of p62 (p62ZZ). We show that binding of p62ZZ to Nt-R substrates stimulates p62 aggregation and macroautophagy and is required for autophagic targeting of p62. p62 is essential for mTORC1 activation in response to arginine, but it is not a direct sensor of free arginine in the mTORC1 pathway. We identified a regulatory linker (RL) region in p62 that binds p62ZZ in vitro and may modulate p62 function. Our findings shed new light on the mechanistic and functional significance of the major cytosolic adaptor protein p62 in two fundamental signaling pathways.


Asunto(s)
Autofagia/fisiología , Proteína Sequestosoma-1/metabolismo , Autofagia/genética , Línea Celular , Cristalografía por Rayos X , Citometría de Flujo , Células HEK293 , Humanos , Inmunohistoquímica , Espectroscopía de Resonancia Magnética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Unión Proteica , Proteína Sequestosoma-1/genética , Transducción de Señal , Espectrometría de Fluorescencia
16.
Dev Cell ; 44(5): 555-565.e3, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29533771

RESUMEN

Macroautophagy (autophagy) is intimately linked with cell death and allows cells to evade apoptosis. This has prompted clinical trials to combine autophagy inhibitors with other drugs with the aim of increasing the likelihood of cancer cells dying. However, the molecular basis for such effects is unknown. Here, we describe a transcriptional mechanism that connects autophagy to apoptosis. The autophagy-regulating transcription factor, FOXO3a, is itself turned over by basal autophagy creating a potential feedback loop. Increased FOXO3a upon autophagy inhibition stimulates transcription of the pro-apoptotic BBC3/PUMA gene to cause apoptosis sensitization. This mechanism explains how autophagy inhibition can sensitize tumor cells to chemotherapy drugs and allows an autophagy inhibitor to change the action of an MDM2-targeted drug from growth inhibition to apoptosis, reducing tumor burden in vivo. Thus, a link between two processes mediated via a single transcription factor binding site in the genome can be leveraged to improve anti-cancer therapies.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias de la Mama/patología , Neoplasias del Colon/patología , Proteína Forkhead Box O3/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Antineoplásicos/farmacología , Proteínas Reguladoras de la Apoptosis/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Femenino , Proteína Forkhead Box O3/genética , Humanos , Proteínas Proto-Oncogénicas/genética , Células Tumorales Cultivadas
17.
Cancer Discov ; 7(11): 1218-1220, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29097619

RESUMEN

Lysosomes are the recycling centers of the cell where organelles and proteins are degraded during autophagy and macropinocytosis; they also serve as signaling hubs that control the activity of mTORC1. In this issue, Rebecca and colleagues report the development of a new type of lysosomal inhibitor for cancer therapy that can inhibit multiple lysosomal activities that are needed for tumor cell survival and growth. Cancer Discov; 7(11); 1218-20. ©2017 AACRSee related article by Rebecca et al., p. 1266.


Asunto(s)
Autofagia/efectos de los fármacos , Lisosomas/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Neoplasias/tratamiento farmacológico , Autofagia/genética , Humanos , Lisosomas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Neoplasias/genética , Neoplasias/patología , Transducción de Señal/genética
18.
Nat Rev Cancer ; 17(9): 528-542, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28751651

RESUMEN

Autophagy is a mechanism by which cellular material is delivered to lysosomes for degradation, leading to the basal turnover of cell components and providing energy and macromolecular precursors. Autophagy has opposing, context-dependent roles in cancer, and interventions to both stimulate and inhibit autophagy have been proposed as cancer therapies. This has led to the therapeutic targeting of autophagy in cancer to be sometimes viewed as controversial. In this Review, we suggest a way forwards for the effective targeting of autophagy by understanding the context-dependent roles of autophagy and by capitalizing on modern approaches to clinical trial design.


Asunto(s)
Autofagia/efectos de los fármacos , Cloroquina/uso terapéutico , Hidroxicloroquina/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Autofagia/genética , Biomarcadores de Tumor/metabolismo , Ensayos Clínicos como Asunto , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Sequestosoma-1/metabolismo , Escape del Tumor
19.
Mol Cancer Res ; 15(4): 382-394, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28108622

RESUMEN

TRAIL is a potent death-inducing ligand that mediates apoptosis through the extrinsic pathway and serves as an important endogenous tumor suppressor mechanism. Because tumor cells are often killed by TRAIL and normal cells are not, drugs that activate the TRAIL pathway have been thought to have potential clinical value. However, to date, most TRAIL-related clinical trials have largely failed due to the tumor cells having intrinsic or acquired resistance to TRAIL-induced apoptosis. Previous studies to identify resistance mechanisms have focused on targeted analysis of the canonical apoptosis pathway and other known regulators of TRAIL receptor signaling. To identify novel mechanisms of TRAIL resistance in an unbiased way, we performed a genome-wide shRNA screen for genes that regulate TRAIL sensitivity in sublines that had been selected for acquired TRAIL resistance. This screen identified previously unknown mediators of TRAIL resistance including angiotensin II receptor 2, Crk-like protein, T-Box Transcription Factor 2, and solute carrier family 26 member 2 (SLC26A2). SLC26A2 downregulates the TRAIL receptors, DR4 and DR5, and this downregulation is associated with resistance to TRAIL. Its expression is high in numerous tumor types compared with normal cells, and in breast cancer, SLC26A2 is associated with a significant decrease in relapse-free survival.Implication: Our results shed light on novel resistance mechanisms that could affect the efficacy of TRAIL agonist therapies and highlight the possibility of using these proteins as biomarkers to identify TRAIL-resistant tumors, or as potential therapeutic targets in combination with TRAIL. Mol Cancer Res; 15(4); 382-94. ©2017 AACR.


Asunto(s)
Proteínas de Transporte de Anión/genética , Resistencia a Antineoplásicos , Neoplasias/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Proteínas de Transporte de Anión/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , ARN Interferente Pequeño/genética , Transportadores de Sulfato , Regulación hacia Arriba
20.
EBioMedicine ; 14: 15-23, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28029600

RESUMEN

Autophagy is a catabolic process that facilitates nutrient recycling via degradation of damaged organelles and proteins through lysosomal mediated degradation. Alterations in this complex, and tightly regulated process, lead to disease. Autophagy is widely accepted as cytoprotective against neurodegenerative diseases and a variety of clinical interventions are moving forward to increase autophagy as a therapeutic intervention. Autophagy has both positive and negative roles in cancer and this has led to controversy over whether or how autophagy manipulation should be attempted in cancer therapy. Nevertheless, cancer is the disease where most current activity in trying to manipulate autophagy for therapy is taking place and dozens of clinical trials are using autophagy inhibition with Chloroquine or Hydroxychloroquine in combination with other drugs for the treatment of multiple neoplasms. Here, we review recent literature implicating autophagy in neurodegenerative diseases and cancer and highlight some of the opportunities, controversies and potential pitfalls of therapeutically targeting autophagy.


Asunto(s)
Autofagia/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ensayos Clínicos como Asunto , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...