Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Chem Sci ; 15(16): 6168-6177, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38665538

RESUMEN

A stimuli-sensitive linker is one of the indispensable components of prodrugs for cancer therapy as it covalently binds the drug and releases it upon external stimulation at the tumour site. Quinone methide elimination has been widely used as the key transformation to release drugs based on their nucleofugacity. The usual approach is to bind the drug to the linker as a carbamate and release it as a free amine after a self-immolative 1,6-elimination. Although this approach is very efficient, it is limited to amines (as carbamates), alcohols or phenols (as carbonates) or other acidic functional groups. We report here a self-immolative spacer capable of directly linking and releasing amines, phenols, thiols, sulfonamides and carboxyamides after a reductive stimulus. The spacer is based on the structure of (5-nitro-2-pyrrolyl)methanol (NPYM-OH), which was used for the direct alkylation of the functional groups mentioned above. The spacer is metabolically stable and has three indispensable sites for bioconjugation: the bioresponsive trigger, the conjugated 1,6 self-immolative system and a third arm suitable for conjugation with a carrier or other modifiers. Release was achieved by selective reduction of the nitro group over Fe/Pd nanoparticles (NPs) in a micellar aqueous environment (H2O/TPGS-750-M), or by NADH mediated nitroreductase activation. A DFT study demonstrates that, during the 1,6 elimination, the transition state formed from 5-aminopyrrole has a lower activation energy compared to other 5-membered heterocycles or p-aminobenzyl derivatives. The NPYM scaffold was validated by late-stage functionalisation of approved drugs such as celecoxib, colchicine, vorinostat or ciprofloxacin. A hypoxia-activated NPYM-based prodrug (HAP) derived from HDAC inhibitor ST7612AA1 was also produced, which was active in cancer cells under hypoxic conditions.

2.
Cancers (Basel) ; 15(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37190301

RESUMEN

It is recognized that prostaglandin E2 (PGE2) is one key lipid mediator involved in chronic inflammation, and it is directly implicated in tumor development by regulating cancer cell growth and migration, apoptosis, epithelial-mesenchymal transition, angiogenesis, and immune escape. In addition, the expression of the enzymes involved in PGE2 synthesis, cyclooxygenase 2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES1), positively correlates with tumor progression and aggressiveness, clearly indicating the crucial role of the entire pathway in cancer. Moreover, several lines of evidence suggest that the COX2/mPGES1/PGE2 inflammatory axis is involved in the modulation of epidermal growth factor receptor (EGFR) signaling to reinforce the oncogenic drive of EGFR activation. Similarly, EGFR activation promotes the induction of COX2/mPGES1 expression and PGE2 production. In this review, we describe the interplay between COX2/mPGES1/PGE2 and EGFR in cancer, and new therapeutic strategies that target this signaling pathway, to outline the importance of the modulation of the inflammatory process in cancer fighting.

3.
Foods ; 12(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36832915

RESUMEN

Phaseolus vulgaris L. (common bean) contains high levels of proteins, unsaturated fatty acids, minerals, fibers, and vitamins, and for this reason, it represents an essential component of the diet. More than 40,000 varieties of beans have been recognized and are staple foods in the traditional cuisine of many countries. In addition to its high nutritional value, P. vulgaris is also characterized by its nutraceutical properties and favors environmental sustainability. In this manuscript, we studied two different varieties of P. vulgaris, Cannellino and Piattellino. We investigated the effects of traditional processing (soaking and cooking) and in vitro gastrointestinal digestion of beans on their phytochemical composition and anticancer activity. Using HT29 and HCT116 colon cancer cell lines, we showed that the extract obtained after gastrointestinal digestion of cooked beans (the bioaccessible fraction, BF) induces cell death through the induction of the autophagic process. We demonstrated that the BF of Cannellino and Piattellino beans at the concentration of 100 µg/mL reduces cell vitality, measured by MMT assay, of both HT29 (88.41% ± 5.79 and 94.38% ± 0.47) and HCT116 (86.29% ± 4.3 and 91.23% ± 0.52) cell lines. Consistently, the treatment of HT29 cells with 100 µg/mL of Cannellino and Piattellino BFs reduced clonogenicity by 95% ± 2.14 and 96% ± 0.49, respectively. Moreover, the activity of extracts appeared to be selective for colon cancer cells. The data shown in this work further confirm P. vulgaris to be among foods with beneficial effects for human health.

4.
Chem Commun (Camb) ; 58(75): 10532-10535, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36043993

RESUMEN

We report a new 1-6 self-immolative, traceless crosslinker derived from the natural product gallic acid. The linker acts through a pH-dependent mechanism for drug release. This 5-(hydroxymethyl)pyrogallol orthoester derivative (HMPO) was stable for 24 hours at pH values of 7.4 and 6.6 and in plasma, releasing molecules bound to the hydroxymethyl moiety under acid-dependent stimuli at pH 5.5. The linker was non-toxic and was used for the conjugation of Doxorubicin (Doxo) or Combretastatin A4 with Cetuximab. The ADCs formed showed their pH responsivity reducing cell viability of A431 and A549 cancer cells better than Cetuximab alone.


Asunto(s)
Productos Biológicos , Inmunoconjugados , Línea Celular Tumoral , Cetuximab/farmacología , Doxorrubicina/farmacología , Ácido Gálico/farmacología , Concentración de Iones de Hidrógeno , Inmunoconjugados/química , Inmunoconjugados/farmacología , Pirogalol
5.
Int J Mol Sci ; 23(15)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35955669

RESUMEN

Avena sativa L. is a wholegrain cereal and an important edible crop. Oats possesses high nutritional and health promoting values and contains high levels of bioactive compounds, including a group of phenolic amides, named avenanthramides (Avns), exerting antioxidant, anti-inflammatory, and anticancer activities. Epidermal growth factor receptor (EGFR) represents one of the most known oncogenes and it is frequently up-regulated or mutated in human cancers. The oncogenic effects of EGFR include enhanced cell growth, angiogenesis, and metastasis, and down-regulation or inhibition of EGFR signaling has therapeutic benefit. Front-line EGFR tyrosine kinase inhibitor therapy is the standard therapy for patients with EGFR-mutated lung cancer. However, the clinical effects of EGFR inhibition may be lost after a few months of treatment due to the onset of resistance. Here, we showed the anticancer activity of Avns, focusing on EGFR activation and signaling pathway. Lung cancer cellular models have been used to evaluate the activity of Avns on tumor growth, migration, EMT, and anoikis induced by EGF. In addition, docking and molecular dynamics simulations showed that the Avns bind with high affinity to a region in the vicinity of αC-helix and the DGF motif of EGFR, jeopardizing the target biological function. Altogether, our results reveal a new pharmacological activity of Avns as EGFR tyrosine kinase inhibitors.


Asunto(s)
Avena , Neoplasias Pulmonares , Avena/química , Línea Celular Tumoral , Grano Comestible/química , Factor de Crecimiento Epidérmico , Receptores ErbB/análisis , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , ortoaminobenzoatos
7.
Foods ; 11(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563963

RESUMEN

Cornus species are widely distributed in central and southern Europe, east Africa, southwest Asia, and America. Several species are known for edible fruits, especially Cornus mas and Cornus officinalis. These delicious fruits, characterized by their remarkable nutritional and biological values, are widely used in traditional medicine. In contrast to the other edible Cornus species, C. mas and C. officinalis are the most studied for which little information is available on the main phytochemicals and their biological activities. Fruits are characterised by several classes of secondary metabolites, such as flavonoids, phenolic acids, lignans, anthocyanins, tannins, triterpenoids, and iridoids. The available phytochemical data show that the different classes of metabolites have not been systematically studied. However, these edible species are all worthy of interest because similarities have been found. Thus, this review describes the traditional uses of Cornus species common in Europe and Asia, a detailed classification of the bioactive compounds that characterize the fruits, and their beneficial health effects. Cornus species are a rich source of phytochemicals with nutritional and functional properties that justify the growing interest in these berries, not only for applications in the food industry but also useful for their medicinal properties.

8.
Biology (Basel) ; 9(12)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271839

RESUMEN

The involvement of inflammation in cancer progression has been the subject of research for many years. Inflammatory milieu and immune response are associated with cancer progression and recurrence. In different types of tumors, growth and metastatic phenotype characterized by the epithelial mesenchymal transition (EMT) process, stemness, and angiogenesis, are increasingly associated with intrinsic or extrinsic inflammation. Among the inflammatory mediators, prostaglandin E2 (PGE2) supports epithelial tumor aggressiveness by several mechanisms, including growth promotion, escape from apoptosis, transactivation of tyrosine kinase growth factor receptors, and induction of angiogenesis. Moreover, PGE2 is an important player in the tumor microenvironment, where it suppresses antitumor immunity and regulates tumor immune evasion, leading to increased tumoral progression. In this review, we describe the current knowledge on the pro-tumoral activity of PGE2 focusing on its role in cancer progression and in the regulation of the tumor microenvironment.

9.
Antioxidants (Basel) ; 9(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256057

RESUMEN

Phaseolus vulgaris L. (common bean) is a leguminous species that is an important dietary component due to its high content of proteins, unsaturated fatty acids, minerals, dietary fibers and vitamins. Due to the high content of polyphenols, several biological activities have been described for bean extracts, making it possible to include P. vulgaris among food with beneficial effects for human health. Moreover, more than 40,000 varieties of beans have been recognised with different nutraceutical properties, pointing out the importance of food biodiversity. In this work, we describe for the first time the chemical composition and biological activity of a newly recognized Italian variety of P. vulgaris grown in a restricted area of the Tuscany region and named "Fagiola di Venanzio". Fagiola di Venanzio water extract is rich in proteins, sugars and polyphenols and displays antioxidant, anti-inflammatory and antiproliferative activities in in vitro assays on colon cancer cellular models. Our data indicate that this variety of P. vulgaris appears to be a promising source of bioactive compounds and encourage more in-depth studies to better elucidate the implications of its consumption for public health.

10.
Arch Biochem Biophys ; 691: 108483, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32735866

RESUMEN

Krev interaction trapped protein 1 (KRIT1) is a scaffold protein known to form functional complexes with distinct proteins, including Malcavernin, PDCD10, Rap1 and others. It appears involved in several cellular signaling pathways and exerts a protective role against inflammation and oxidative stress. KRIT1 has been studied as a regulator of endothelial cell functions and represents a determinant in the pathogenesis of Cerebral Cavernous Malformation (CCM), a cerebrovascular disease characterized by the formation of clusters of abnormally dilated and leaky blood capillaries, which predispose to seizures, neurological deficits and intracerebral hemorrhage. Although KRIT1 is ubiquitously expressed, few studies have described its involvement in pathologies other than CCM including cancer. Cutaneous melanoma represents the most fatal skin cancer due to its high metastatic propensity. Despite the numerous efforts made to define the signaling pathways activated during melanoma progression, the molecular mechanisms at the basis of melanoma growth, phenotype plasticity and resistance to therapies are still under investigation.


Asunto(s)
Proteína KRIT1/metabolismo , Melanoma/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Movimiento Celular/fisiología , Núcleo Celular/metabolismo , Proliferación Celular/genética , Regulación hacia Abajo , Femenino , Técnicas de Silenciamiento del Gen/métodos , Humanos , Proteína KRIT1/genética , Masculino , Melanocitos/metabolismo , Melanoma/patología , Persona de Mediana Edad , beta Catenina/metabolismo
11.
Methods Mol Biol ; 2152: 3-25, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524540

RESUMEN

Cerebral cavernous malformation (CCM) is a rare cerebrovascular disorder of genetic origin consisting of closely clustered, abnormally dilated and leaky capillaries (CCM lesions), which occur predominantly in the central nervous system. CCM lesions can be single or multiple and may result in severe clinical symptoms, including focal neurological deficits, seizures, and intracerebral hemorrhage. Early human genetic studies demonstrated that CCM disease is linked to three chromosomal loci and can be inherited as autosomal dominant condition with incomplete penetrance and highly variable expressivity, eventually leading to the identification of three disease genes, CCM1/KRIT1, CCM2, and CCM3/PDCD10, which encode for structurally unrelated intracellular proteins that lack catalytic domains. Biochemical, molecular, and cellular studies then showed that these proteins are involved in endothelial cell-cell junction and blood-brain barrier stability maintenance through the regulation of major cellular structures and mechanisms, including endothelial cell-cell and cell-matrix adhesion, actin cytoskeleton dynamics, autophagy, and endothelial-to-mesenchymal transition, suggesting that they act as pleiotropic regulators of cellular homeostasis, and opening novel therapeutic perspectives. Indeed, accumulated evidence in cellular and animal models has eventually revealed that the emerged pleiotropic functions of CCM proteins are mainly due to their ability to modulate redox-sensitive pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, thus contributing to the preservation of cellular homeostasis and stress defenses.In this introductory review, we present a general overview of 20 years of amazing progress in the identification of genetic culprits and molecular mechanisms underlying CCM disease pathogenesis, and the development of targeted therapeutic strategies.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/terapia , Terapia Molecular Dirigida , Alelos , Animales , Biomarcadores , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Estudios de Asociación Genética/métodos , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Humanos , Imagen por Resonancia Magnética , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
12.
Methods Mol Biol ; 2152: 345-369, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524564

RESUMEN

The yeast two-hybrid system was originally designed to detect protein-protein interactions using yeast transcriptional activators. Since its original description, this technique has been extensively used to identify protein-protein interactions from many different organisms, thus providing a convenient mean to both screen for proteins that interact with a protein of interest and to characterize the known interaction between two proteins. Nowadays, the yeast two-hybrid screen remains one of the leading molecular tools to study protein-protein interactions in native intracellular conditions. In these years, the technique has improved to overcome the limitations of the original assay, and many efforts have been made to scale up the technique and to adapt it to large-scale studies. In addition, variations have been introduced to enlarge the range of proteins and interactors that can be assayed by hybrid-based approaches.Several groups studying molecular mechanisms underlying the Cerebral Cavernous Malformation disease have successfully used the yeast two-hybrid system or related methods to isolate, identify, and characterize molecular interactions involved in the onset and progression of the pathology.Here we describe general principles, strengths, and limits of the yeast two-hybrid technology, and the basic protocol for a yeast two-hybrid library screening and for a small-scale yeast two-hybrid assay by using a GAL4-based system.


Asunto(s)
Biomarcadores , Susceptibilidad a Enfermedades , Hemangioma Cavernoso del Sistema Nervioso Central/etiología , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Técnicas del Sistema de Dos Híbridos , Expresión Génica , Orden Génico , Genes Reporteros , Vectores Genéticos/genética , Biblioteca de Péptidos , Unión Proteica , Mapeo de Interacción de Proteínas/métodos
13.
Methods Mol Biol ; 2152: 377-385, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524566

RESUMEN

Cerebral cavernous malformation (CCM) is a cerebrovascular disorder of proven genetic origin characterized by abnormally dilated and leaky capillaries occurring mainly in the central nervous system, with a prevalence of 0.3-0.5% in the general population. Genetic studies have identified three genes associated to CCMs: KRIT1 (CCM1), MGC4607 (CCM2), and PDCD10 (CCM3), which account for about 50%, 20%, and 10% of the cases, respectively. The great advances in the knowledge of the physiopathological functions of CCM genes, such as their involvement in the angiogenic process, have allowed to propose distinct putative therapeutic compounds, which showed to be effective at least in limiting some pathological phenotypes in cellular and animal models of the disease. However, despite numerous efforts, targeted pharmacological therapies that improve the outcome of CCM disease are currently lacking.Here we describe simply and low-cost assays as in vitro endothelial cell proliferation and migration assays that can be used to better understand the role of CCM genes on endothelial cell functions and to screen potential new compounds for CCM therapy.


Asunto(s)
Susceptibilidad a Enfermedades , Células Endoteliales/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/etiología , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Neovascularización Patológica/etiología , Neovascularización Patológica/metabolismo , Movimiento Celular/genética , Proliferación Celular , Células Cultivadas , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Humanos , Proteínas Asociadas a Microtúbulos/genética
14.
Cell Signal ; 68: 109527, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31917192

RESUMEN

Cerebral cavernous malformation (CCM) is a cerebrovascular disorder of proven genetic origin characterized by abnormally dilated and leaky capillaries occurring mainly in the central nervous system, with a prevalence of 0.3-0.5% in the general population. Genetic studies have identified causative mutations in three genes, CCM1/KRIT1, CCM2 and CCM3, which are involved in the maintenance of vascular homeostasis. However, distinct studies in animal models have clearly shown that CCM gene mutations alone are not sufficient to cause CCM disease, but require additional contributing factors, including stochastic events of increased oxidative stress and inflammation. Consistently, previous studies have shown that up-regulation of NADPH oxidase-mediated production of reactive oxygen species (ROS) in KRIT1 deficient endothelium contributes to the loss of microvessel barrier function. In this study, we demonstrate that KRIT1 loss-of-function in stromal cells, such as fibroblasts, causes the up-regulation of NADPH oxidase isoform 1 (NOX1) and the activation of inflammatory pathways, which in turn promote an enhanced production of proangiogenic factors, including vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE2). Furthermore and importantly, we show that conditioned media from KRIT1 null fibroblasts induce proliferation, migration, matrix metalloproteinase 2 (MMP2) activation and VE-cadherin redistribution in wild type human endothelial cells. Taken together, our results demonstrate that KRIT1 loss-of-function in stromal cells affects the surrounding microenvironment through a NOX1-mediated induction and release of angiogenic factors that are able to promote paracrine proangiogenic responses in human endothelial cells, thus pointing to a novel role for endothelial cell-nonautonomous effects of KRIT1 mutations in CCM pathogenesis, and opening new perspectives for disease prevention and treatment.


Asunto(s)
Proteína KRIT1/metabolismo , NADPH Oxidasa 1/metabolismo , Neovascularización Fisiológica , Comunicación Paracrina , Regulación hacia Arriba , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Ciclooxigenasa 2/metabolismo , Dinoprostona/biosíntesis , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones Noqueados , Neovascularización Fisiológica/efectos de los fármacos , Comunicación Paracrina/efectos de los fármacos , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Molecules ; 23(8)2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30071605

RESUMEN

An actinobacteria strain was isolated from Algerian Sahara soil and assigned to Streptomyces cyaneofuscatus Pridham et al. 1958 species. This strain was selected for its ability to produce melanin exopigments in liquid and solid media. Melanin synthesis was associated with tyrosinase activity and the enzyme from this strain was isolated and biochemically characterized. Synthetic melanin was then enzymatically produced using the S. cyaneofuscatus Pridham et al. 1958 tyrosinase. As this enzyme showed a higher diphenolase activity, a synthetic melanin from the enzymic oxidation of 3,4-dihydroxyphenylalanine (dopa) was obtained by the use of a Trametes versicolor (L.) Lloyd laccase for comparison. The natural and synthetic pigments were physico-chemically characterized by the use of ultraviolet (UV)-Visible, and Fourier transform infrared (FT-IR) and multifrequency electron paramagnetic resonance (EPR) spectroscopies. All the melanin samples displayed a stable free radical when analyzed by X-band EPR spectroscopy. Once the samples were recorded at Q-band EPR, a copolymer derived from a mixture of different constituents was evident in the natural melanin. All radical species were analyzed and discussed. The use of water-soluble melanin naturally produced by S. cyaneofuscatus Pridham et al. 1958 represents a new biotechnological alternative to commercial insoluble pigments.


Asunto(s)
Lacasa/metabolismo , Melaninas/metabolismo , Monofenol Monooxigenasa/metabolismo , Streptomyces/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Espectroscopía Infrarroja por Transformada de Fourier
16.
Nutrients ; 10(9)2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30149546

RESUMEN

Avenanthramides (Avns), polyphenols found exclusively in oats, are emerging as promising therapeutic candidates for the treatment of several human diseases, including colon cancer. By engineering a Saccharomyces cerevisiae strain, we previously produced two novel phenolic compounds, N-(E)-p-coumaroyl-3-hydroxyanthranilic acid (Yeast avenanthramide I, YAvnI) and N-(E)-caffeoyl-3-hydroxyanthranilic acid (Yeast avenanthramide II, YAvnII), which are endowed with a structural similarity to bioactive oat avenanthramides and stronger antioxidant properties. In this study, we evaluated the ability of these yeast-derived recombinant avenanthramides to inhibit major hallmarks of colon cancer cells, including sustained proliferation, migration and epithelial-mesenchymal transition (EMT). Using the human colon adenocarcinoma cell line HT29, we compared the impact of YAvns and natural Avns, including Avn-A and Avn-C, on colon cancer cells by performing MTT, clonogenic, adhesion, migration, and anchorage-independent growth assays, and analyzing the expression of EMT markers. We found that both YAvns and Avns were able to inhibit colon cancer cell growth by increasing the expression of p21, p27 and p53 proteins. However, YAvns resulted more effective than natural compounds in inhibiting cancer cell migration and reverting major molecular features of the EMT process, including the down-regulation of E-cadherin mRNA and protein levels.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , ortoaminobenzoatos/farmacología , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Antineoplásicos/aislamiento & purificación , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Células HT29 , Humanos , Invasividad Neoplásica , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , ortoaminobenzoatos/aislamiento & purificación
17.
Free Radic Biol Med ; 115: 202-218, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29170092

RESUMEN

KRIT1 (CCM1) is a disease gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease of proven genetic origin affecting 0.3-0.5% of the population. Previously, we demonstrated that KRIT1 loss-of-function is associated with altered redox homeostasis and abnormal activation of the redox-sensitive transcription factor c-Jun, which collectively result in pro-oxidative, pro-inflammatory and pro-angiogenic effects, suggesting a novel pathogenic mechanism for CCM disease and raising the possibility that KRIT1 loss-of-function exerts pleiotropic effects on multiple redox-sensitive mechanisms. To address this possibility, we investigated major redox-sensitive pathways and enzymatic systems that play critical roles in fundamental cytoprotective mechanisms of adaptive responses to oxidative stress, including the master Nrf2 antioxidant defense pathway and its downstream target Glyoxalase 1 (Glo1), a pivotal stress-responsive defense enzyme involved in cellular protection against glycative and oxidative stress through the metabolism of methylglyoxal (MG). This is a potent post-translational protein modifier that may either contribute to increased oxidative molecular damage and cellular susceptibility to apoptosis, or enhance the activity of major apoptosis-protective proteins, including heat shock proteins (Hsps), promoting cell survival. Experimental outcomes showed that KRIT1 loss-of-function induces a redox-sensitive sustained upregulation of Nrf2 and Glo1, and a drop in intracellular levels of MG-modified Hsp70 and Hsp27 proteins, leading to a chronic adaptive redox homeostasis that counteracts intrinsic oxidative stress but increases susceptibility to oxidative DNA damage and apoptosis, sensitizing cells to further oxidative challenges. While supporting and extending the pleiotropic functions of KRIT1, these findings shed new light on the mechanistic relationship between KRIT1 loss-of-function and enhanced cell predisposition to oxidative damage, thus providing valuable new insights into CCM pathogenesis and novel options for the development of preventive and therapeutic strategies.


Asunto(s)
Encéfalo/patología , Neoplasias del Sistema Nervioso Central/genética , Células Endoteliales/fisiología , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Proteína KRIT1/genética , Mutación/genética , Estrés Oxidativo/genética , Animales , Apoptosis , Autofagia/genética , Células Cultivadas , Neoplasias del Sistema Nervioso Central/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Homeostasis , Humanos , Proteína KRIT1/metabolismo , Lactoilglutatión Liasa/metabolismo , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Piruvaldehído/metabolismo
18.
J Biotechnol ; 265: 54-64, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29133199

RESUMEN

In the present study different actinomycete strains were collected and isolated from Algerian Sahara soil with the aim to select novel enzymes with promising features for biotechnological applications. The Ms1 strain was selected, amongst the others, for its capability to produce melanin in different solid media. Ms1 chromosomal DNA was sequenced and the strain assigned to Streptomyces cyaneofuscatus sp. A tyrosinase (MW∼30kD) encoding sequence was identified and the corresponding enzyme was isolated and biochemically characterized. The tyrosinase showed the highest activity and stability at neutral and alkaline pH and it was able to oxidize l-DOPA at T=55°C and pH 7. The enzyme showed variable stability in presence of various water-miscible organic solvents, while it was inactivated by reducing agents. The tyrosinase activity was unaffected by NaCl and enhanced by different cations. Furthermore, the enzyme showed a higher specificity for diphenols than monophenols showing a higher diphenolase than monophenolase activity. Finally, tyrosinase was stabilized by immobilization on nylon nanofiber membranes with a payload of 82% when 1% glutaraldeyde was used. Taken all together, these results show that the enzyme displays interesting properties for biotechnological purposes.


Asunto(s)
Monofenol Monooxigenasa/aislamiento & purificación , Streptomyces/metabolismo , África del Norte , Secuencia de Aminoácidos , ADN Bacteriano/análisis , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Levodopa/metabolismo , Membranas Artificiales , Microscopía Electrónica de Rastreo , Monofenol Monooxigenasa/química , Monofenol Monooxigenasa/metabolismo , Nanofibras , Nylons , Microbiología del Suelo , Streptomyces/genética , Streptomyces/ultraestructura
19.
Sci Rep ; 7(1): 8296, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811547

RESUMEN

The intracellular scaffold KRIT1/CCM1 is an established regulator of vascular barrier function. Loss of KRIT1 leads to decreased microvessel barrier function and to the development of the vascular disorder Cerebral Cavernous Malformation (CCM). However, how loss of KRIT1 causes the subsequent deficit in barrier function remains undefined. Previous studies have shown that loss of KRIT1 increases the production of reactive oxygen species (ROS) and exacerbates vascular permeability triggered by several inflammatory stimuli, but not TNF-α. We now show that endothelial ROS production directly contributes to the loss of barrier function in KRIT1 deficient animals and cells, as targeted antioxidant enzymes reversed the increase in permeability in KRIT1 heterozygous mice as shown by intravital microscopy. Rescue of the redox state restored responsiveness to TNF-α in KRIT1 deficient arterioles, but not venules. In vitro, KRIT1 depletion increased endothelial ROS production via NADPH oxidase signaling, up-regulated Nox4 expression, and promoted NF-κB dependent promoter activity. Recombinant yeast avenanthramide I, an antioxidant and inhibitor of NF-κB signaling, rescued barrier function in KRIT1 deficient cells. However, KRIT1 depletion blunted ROS production in response to TNF-α. Together, our data indicate that ROS signaling is critical for the loss of barrier function following genetic deletion of KRIT1.


Asunto(s)
Endotelio/metabolismo , Proteína KRIT1/deficiencia , NADPH Oxidasas/metabolismo , Oxidación-Reducción , Transducción de Señal , Animales , Antioxidantes/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/genética , Regulación de la Expresión Génica , Proteína KRIT1/genética , Proteína KRIT1/metabolismo , Ratones , Ratones Noqueados , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
20.
Free Radic Biol Med ; 92: 100-109, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26795600

RESUMEN

BACKGROUND: Familial Cerebral Cavernous Malformation type 1 (CCM1) is an autosomal dominant disease caused by mutations in the Krev Interaction Trapped 1 (KRIT1/CCM1) gene, and characterized by multiple brain lesions. CCM lesions manifest across a range of different phenotypes, including wide differences in lesion number, size and susceptibility to intracerebral hemorrhage (ICH). Oxidative stress plays an important role in cerebrovascular disease pathogenesis, raising the possibility that inter-individual variability in genes related to oxidative stress may contribute to the phenotypic differences observed in CCM1 disease. Here, we investigated whether candidate oxidative stress-related cytochrome P450 (CYP) and matrix metalloproteinase (MMP) genetic markers grouped by superfamilies, families or genes, or analyzed individually influence the severity of CCM1 disease. METHODS: Clinical assessment and cerebral susceptibility-weighted magnetic resonance imaging (SWI) were performed to determine total and large (≥5mm in diameter) lesion counts as well as ICH in 188 Hispanic CCM1 patients harboring the founder KRIT1/CCM1 'common Hispanic mutation' (CCM1-CHM). Samples were genotyped on the Affymetrix Axiom Genome-Wide LAT1 Human Array. We analyzed 1,122 genetic markers (both single nucleotide polymorphisms (SNPs) and insertion/deletions) grouped by CYP and MMP superfamily, family or gene for association with total or large lesion count and ICH adjusted for age at enrollment and gender. Genetic markers bearing the associations were then analyzed individually. RESULTS: The CYP superfamily showed a trend toward association with total lesion count (P=0.057) and large lesion count (P=0.088) in contrast to the MMP superfamily. The CYP4 and CYP8 families were associated with either large lesion count or total lesion count (P=0.014), and two other families (CYP46 and the MMP Stromelysins) were associated with ICH (P=0.011 and 0.007, respectively). CYP4F12 rs11085971, CYP8A1 rs5628, CYP46A1 rs10151332, and MMP3 rs117153070 single SNPs, mainly bearing the above-mentioned associations, were also individually associated with CCM1 disease severity. CONCLUSIONS: Overall, our candidate oxidative stress-related genetic markers set approach outlined CYP and MMP families and identified suggestive SNPs that may impact the severity of CCM1 disease, including the development of numerous and large CCM lesions and ICH. These novel genetic risk factors of prognostic value could serve as early objective predictors of disease outcome and might ultimately provide better options for disease prevention and treatment.


Asunto(s)
Encéfalo/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Metaloproteinasas de la Matriz/genética , Estrés Oxidativo/genética , Adulto , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Femenino , Genotipo , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico por imagen , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Heterocigoto , Humanos , Proteína KRIT1 , Imagen por Resonancia Magnética , Masculino , Proteínas Asociadas a Microtúbulos/genética , Persona de Mediana Edad , Familia de Multigenes/genética , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas/genética , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...