Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 194
1.
Eur Urol Oncol ; 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38570239

BACKGROUND: Metastasis-directed therapy (MDT) is increasingly being used in oligometastatic castration-sensitive prostate cancer (omCSPC). However, it is currently unclear how to optimally integrate MDT with the standard of care of systemic hormonal therapy. OBJECTIVE: To report long-term outcomes of MDT alone versus MDT and a defined course of androgen deprivation therapy (ADT) in omCSPC. DESIGN, SETTING, AND PARTICIPANTS: Here, a multicenter, international retrospective cohort of omCSPC as defined by conventional imaging was reported. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Biochemical progression-free survival (bPFS), distant progression-free survival (dPFS), and combined biochemical or distant progression-free survival (cPFS) were evaluated with Kaplan-Meier and multivariable Cox proportional hazard regression models. RESULTS AND LIMITATIONS: A total of 263 patients were included, 105 with MDT + ADT and 158 with MDT alone. The majority of patients had metachronous disease (90.5%). Five-year bPFS, dPFS, and cPFS were, respectively, 24%, 41%, and 19% in patients treated with MDT + ADT and 11% (hazard ratio [HR] 0.48, 95% confidence interval [CI] 0.36-0.64), 29% (HR 0.56, 95% CI 0.40-0.78), and 9% (HR 0.50, 95% CI 0.38-0.67) in patients treated with MDT alone. On a multivariable analysis adjusting for pretreatment variables, the use of ADT was associated with improved bPFS (HR 0.43, p < 0.001), dPFS (HR 0.45, p = 0.002), and cPFS (HR 0.44, p < 0.001). CONCLUSIONS: In this large multi-institutional report, the addition of concurrent ADT to MDT appears to improve time to prostate-specific antigen progression and distant recurrence, noting that about 10% patients had durable control with MDT alone. Ongoing phase 3 studies will help further define treatment options for omCSPC. PATIENT SUMMARY: Here, we report a large retrospective review evaluating the outcomes of metastasis-directed therapy with or without a limited course of androgen deprivation for patients with oligometastatic castration-sensitive prostate cancer. This international multi-institutional review demonstrates that the addition of androgen deprivation therapy to metastasis-directed therapy (MDT) improves progression-free survival. While a proportion of patients appear to have long-term disease control with MDT alone, further work in biomarker discovery is required to better identify which patients would be appropriate for de-escalated therapy.

2.
Mol Cancer Ther ; 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38670554

Most patients with lung squamous cell carcinoma (LSCC) undergo chemotherapy, radiotherapy, and adjuvant immunotherapy for locally advanced disease. The efficacy of these treatments is still limited due to dose-limiting toxicity or locoregional recurrence. New combination approaches and targets such as actionable oncogenic drivers are needed to advance treatment options for LSCC patients. Moreover, other options for chemotherapy-ineligible patients are also limited. As such there is a critical need for the development of selective and potent chemoradiosensitizers for locally advanced LSCC. Here, we investigated inhibiting TRAF2 and NCK-interacting protein kinase (TNIK), which is amplified in 40% of LSCC patients, as a strategy to sensitize LSCC tumors to chemo- and radiotherapy. Employing a range of human LSCC cell lines and the TNIK inhibitor NCB-0846, we investigated the potential of TNIK as a chemo- and radiosensitizing target with in vitro and in vivo preclinical models. The combination of NCB-0846 with cisplatin or etoposide was at best additive. Interestingly, pre-treating LSCC cells with NCB-0846 prior to ionizing radiation (IR) potentiated the cytotoxicity of IR in a TNIK-specific fashion. Characterization of the radiosensitization mechanism suggested that TNIK inhibition may impair the DNA damage response and promote mitotic catastrophe in irradiated cells. In a subcutaneous xenograft in vivo model, pretreatment with NCB-0846 significantly enhanced the efficacy of IR and caused elevated necrosis in TNIKhigh LK2 tumors but not TNIKlow KNS62 tumors. Overall, these results indicate that TNIK inhibition may be a promising strategy to increase the efficacy of radiotherapy in LSCC patients with high TNIK expression.

3.
Eur Urol Oncol ; 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38641541

Chemoradiation therapy (CRT) is a treatment for muscle-invasive bladder cancer (MIBC). Using a novel transcriptomic profiling panel, we validated prognostic immune biomarkers to CRT using 70 pretreatment tumor samples from prospective trials of MIBC (NRG/RTOG 0524 and 0712). Disease-free survival (DFS) and overall survival (OS) were estimated via the Kaplan-Meier method and stratified by genes correlated with immune cell activation. Cox proportional-hazards models were used to assess group differences. Clustering of gene expression profiles revealed that the cluster with high immune cell content was associated with longer DFS (hazard ratio [HR] 0.53, 95% confidence interval [CI] 0.26-1.10; p = 0.071) and OS (HR 0.48, 95% CI 0.24-0.97; p = 0.040) than the cluster with low immune cell content. Higher expression of T-cell infiltration genes (CD8A and ICOS) was associated with longer DFS (HR 0.40, 95% CI 0.21-0.75; p = 0.005) and OS (HR 0.49, 95% CI 0.25-0.94; p = 0.033). Higher IDO1 expression (IFNγ signature) was also associated with longer DFS (HR 0.44, 95% CI 0.24-0.88; p = 0.021) and OS (HR 0.49, 95% CI 0.24-0.99; p = 0.048). These findings should be validated in prospective CRT trials that include biomarkers, particularly for trials incorporating immunotherapy for MIBC. PATIENT SUMMARY: We analyzed patient samples from two clinical trials (NRG/RTOG 0524 and 0712) of chemoradiation for muscle-invasive bladder cancer using a novel method to assess immune cells in the tumor microenvironment. Higher expression of genes associated with immune activation and high overall immune-cell content were associated with better disease-free survival and overall survival for patients treated with chemoradiation.

4.
Curr Opin Oncol ; 36(3): 180-185, 2024 May 01.
Article En | MEDLINE | ID: mdl-38362949

PURPOSE OF REVIEW: The evolving role of stereotactic ablative radiation therapy (SABR) as metastasis-directed therapy (MDT) for oligometastatic prostate cancer (omPCa) will be discussed. RECENT FINDINGS: Oligometastatic disease (OMD) is an intermediate state between localized and wide-spread malignant disease. OMD has recently been spotlighted given the increasing demonstration of clinical benefit from local therapies despite presence of metastatic disease and allure of the curative potential of MDT in select cases. Among the different forms of MDT, SABR has rapidly become a widely adopted treatment modality. Significant efforts in this space have focused on omPCa, owing to its relatively indolent biology, presence of a sensitive and specific serum biomarker and recent advances in molecular imaging. While most studies have evaluated the role of SABR MDT in hormone sensitive omPCa, new emerging clinical data also suggests benefits of SABR MDT for even castration-resistant disease. SUMMARY: Treating omPCa with SABR MDT appears to generate an efficacy signal with minimal morbidity across both hormone-sensitive and castration-resistant disease. However, additional definitive omPCa trial data are needed. Future research efforts should investigate biomarkers for this heterogeneous disease space and the role of SABR MDT in combination with systemic agents to improve upon standard of care treatments.


Prostatic Neoplasms , Radiosurgery , Male , Humans , Prostatic Neoplasms/pathology , Radiosurgery/methods , Hormones/therapeutic use
5.
J Urol ; 211(4): 526-532, 2024 Apr.
Article En | MEDLINE | ID: mdl-38421252

PURPOSE: The summary presented herein covers recommendations on salvage therapy for recurrent prostate cancer intended to facilitate care decisions and aid clinicians in caring for patients who have experienced a recurrence following prior treatment with curative intent. This is Part III of a three-part series focusing on evaluation and management of suspected non-metastatic recurrence after radiotherapy (RT) and focal therapy, evaluation and management of regional recurrence, management for molecular imaging metastatic recurrence, and future directions. Please refer to Part I for discussion of treatment decision-making and Part II for discussion of treatment delivery for non-metastatic biochemical recurrence (BCR) after radical prostatectomy (RP). MATERIALS AND METHODS: The systematic review that informs this Guideline was based on searches in Ovid MEDLINE (1946 to July 21, 2022), Cochrane Central Register of Controlled Trials (through August 2022), and Cochrane Database of Systematic Reviews (through August 2022). Update searches were conducted on July 26, 2023. Searches were supplemented by reviewing electronic database reference lists of relevant articles. RESULTS: In a collaborative effort between AUA, ASTRO, and SUO, the Salvage Therapy for Prostate Cancer Guideline Panel developed evidence- and consensus-based guideline statements to provide guidance for the care of patients who experience BCR after initial definitive local therapy for clinically localized disease. CONCLUSIONS: Continuous and deliberate efforts for multidisciplinary care in prostate cancer will be required to optimize and improve the oncologic and functional outcomes of patients treated with salvage therapies in the future.


Prostatic Neoplasms , Salvage Therapy , Humans , Male , Neoplasm Recurrence, Local/therapy , Prostate-Specific Antigen , Prostatectomy , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology , Salvage Therapy/methods , Systematic Reviews as Topic
6.
J Urol ; 211(4): 509-517, 2024 Apr.
Article En | MEDLINE | ID: mdl-38421253

PURPOSE: The summary presented herein covers recommendations on salvage therapy for recurrent prostate cancer intended to facilitate care decisions and aid clinicians in caring for patients who have experienced a recurrence following prior treatment with curative intent. This is Part I of a three-part series focusing on treatment decision-making at the time of suspected biochemical recurrence (BCR) after radical prostatectomy (RP). Please refer to Part II for discussion of treatment delivery for non-metastatic BCR after RP and Part III for discussion of evaluation and management of recurrence after radiotherapy (RT) and focal therapy, regional recurrence, and oligometastasis. MATERIALS AND METHODS: The systematic review that informs this Guideline was based on searches in Ovid MEDLINE (1946 to July 21, 2022), Cochrane Central Register of Controlled Trials (through August 2022), and Cochrane Database of Systematic Reviews (through August 2022). Update searches were conducted on July 26, 2023. Searches were supplemented by reviewing electronic database reference lists of relevant articles. RESULTS: In a collaborative effort between AUA, ASTRO, and SUO, the Salvage Therapy for Prostate Cancer Panel developed evidence- and consensus-based statements to provide guidance for the care of patients who experience BCR after initial definitive local therapy for clinically localized disease. CONCLUSIONS: Advancing work in the area of diagnostic tools (particularly imaging), biomarkers, radiation delivery, and biological manipulation with the evolving armamentarium of therapeutic agents will undoubtedly present new opportunities for patients to experience long-term control of their cancer while minimizing toxicity.


Prostatic Neoplasms , Salvage Therapy , Humans , Male , Neoplasm Recurrence, Local/therapy , Neoplasm Recurrence, Local/surgery , Prostate/pathology , Prostate-Specific Antigen , Prostatectomy , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/surgery , Salvage Therapy/methods , Systematic Reviews as Topic
7.
J Urol ; 211(4): 518-525, 2024 Apr.
Article En | MEDLINE | ID: mdl-38421243

PURPOSE: The summary presented herein covers recommendations on salvage therapy for recurrent prostate cancer intended to facilitate care decisions and aid clinicians in caring for patients who have experienced a recurrence following prior treatment with curative intent. This is Part II of a three-part series focusing on treatment delivery for non-metastatic biochemical recurrence (BCR) after primary radical prostatectomy (RP). Please refer to Part I for discussion of treatment decision-making and Part III for discussion of evaluation and management of recurrence after radiotherapy (RT) and focal therapy, regional recurrence, and oligometastasis. MATERIALS AND METHODS: The systematic review that informs this Guideline was based on searches in Ovid MEDLINE (1946 to July 21, 2022), Cochrane Central Register of Controlled Trials (through August 2022), and Cochrane Database of Systematic Reviews (through August 2022). Update searches were conducted on July 26, 2023. Searches were supplemented by reviewing electronic database reference lists of relevant articles. RESULTS: In a collaborative effort between AUA, ASTRO, and SUO, the Salvage Therapy for Prostate Cancer Panel developed evidence- and consensus-based guideline statements to provide guidance for the care of patients who experience BCR after initial definitive local therapy for clinically localized disease. CONCLUSIONS: Optimizing and personalizing the approach to salvage therapy remains an ongoing area of work in the field of genitourinary oncology and represents an area of research and clinical care that requires well-coordinated, multi-disciplinary efforts.


Prostatic Neoplasms , Salvage Therapy , Humans , Male , Neoplasm Recurrence, Local/surgery , Prostate/pathology , Prostate-Specific Antigen , Prostatectomy , Prostatic Neoplasms/surgery , Prostatic Neoplasms/pathology , Systematic Reviews as Topic
8.
Eur Urol Oncol ; 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38302323

BACKGROUND: Accurate risk stratification is critical to guide management decisions in localized prostate cancer (PCa). Previously, we had developed and validated a multimodal artificial intelligence (MMAI) model generated from digital histopathology and clinical features. Here, we externally validate this model on men with high-risk or locally advanced PCa treated and followed as part of a phase 3 randomized control trial. OBJECTIVE: To externally validate the MMAI model on men with high-risk or locally advanced PCa treated and followed as part of a phase 3 randomized control trial. DESIGN, SETTING, AND PARTICIPANTS: Our validation cohort included 318 localized high-risk PCa patients from NRG/RTOG 9902 with available histopathology (337 [85%] of the 397 patients enrolled into the trial had available slides, of which 19 [5.6%] failed due to poor image quality). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Two previously locked prognostic MMAI models were validated for their intended endpoint: distant metastasis (DM) and PCa-specific mortality (PCSM). Individual clinical factors and the number of National Comprehensive Cancer Network (NCCN) high-risk features served as comparators. Subdistribution hazard ratio (sHR) was reported per standard deviation increase of the score with corresponding 95% confidence interval (CI) using Fine-Gray or Cox proportional hazards models. RESULTS AND LIMITATIONS: The DM and PCSM MMAI algorithms were significantly and independently associated with the risk of DM (sHR [95% CI] = 2.33 [1.60-3.38], p < 0.001) and PCSM, respectively (sHR [95% CI] = 3.54 [2.38-5.28], p < 0.001) when compared against other prognostic clinical factors and NCCN high-risk features. The lower 75% of patients by DM MMAI had estimated 5- and 10-yr DM rates of 4% and 7%, and the highest quartile had average 5- and 10-yr DM rates of 19% and 32%, respectively (p < 0.001). Similar results were observed for the PCSM MMAI algorithm. CONCLUSIONS: We externally validated the prognostic ability of MMAI models previously developed among men with localized high-risk disease. MMAI prognostic models further risk stratify beyond the clinical and pathological variables for DM and PCSM in a population of men already at a high risk for disease progression. This study provides evidence for consistent validation of our deep learning MMAI models to improve prognostication and enable more informed decision-making for patient care. PATIENT SUMMARY: This paper presents a novel approach using images from pathology slides along with clinical variables to validate artificial intelligence (computer-generated) prognostic models. When implemented, clinicians can offer a more personalized and tailored prognostic discussion for men with localized prostate cancer.

9.
Eur Urol Focus ; 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38307806

BACKGROUND: Androgen deprivation therapy (ADT) has been associated with coronary heart disease and myocardial infarction (MI) in prostate cancer patients, but controversy persists regarding its effects on cardiovascular mortality (CVM). OBJECTIVE: We assessed the long-term relationship between ADT and CVM in a prostate cancer randomized trial (NRG Oncology/Radiation Therapy Oncology Group 9202). DESIGN, SETTING, AND PARTICIPANTS: From 1992 to 1995, 1554 men with locally advanced prostate cancer (T2c-T4, prostate-specific antigen <150 ng/ml) received radiotherapy with 4 mo (short-term [STADT]) versus 28 mo (longer-term [LTADT]) of ADT. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Using the Fine-Gray and Cox regression models, the relationship between ADT and mortality was evaluated. RESULTS AND LIMITATIONS: With a median follow-up of 19.6 yr, LTADT was associated with improved overall survival (OS) versus STADT (adjusted hazard ratio [HR] 0.88; p = 0.03) and prostate cancer survival (subdistribution HR [sHR] 0.70, p = 0.003). Comparing LTADT with STADT, prostate cancer mortality improved by 6.0% (15.6% [95% confidence interval 13.0-18.3%] vs 21.6% [18.6-24.7%]) at 15 yr, while CVM increased by 2.2% (14.9% [12.4-17.6%] vs 12.7% [10.4-15.3%]). In multivariable analyses, LTADT was not associated with increased CVM versus STADT (sHR 1.22 [0.93-1.59]; p = 0.15). An association between LTADT and MI death was detected (sHR 1.58 [1.00-2.50]; p = 0.05), particularly in patients with prevalent cardiovascular disease (CVD; sHR 2.54 [1.16-5.58]; p = 0.02). CONCLUSIONS: With 19.6 yr of follow-up, LTADT was not significantly associated with increased CVM in men with locally advanced prostate cancer. Patients may have increased MI mortality with LTADT, particularly those with baseline CVD. Overall, there remained a prostate cancer mortality benefit and no OS detriment with LTADT. PATIENT SUMMARY: In a long-term analysis of a large randomized prostate cancer trial, radiation with 28 mo of hormone therapy did not increase the risk of cardiovascular death significantly versus 4 mo of hormone therapy. Future studies are needed for patients with pre-existing heart disease, who may have an increased risk of myocardial infarction death with longer hormone use.

10.
J Cancer Allied Spec ; 10(1): 579, 2024.
Article En | MEDLINE | ID: mdl-38259673

Introduction: Due to the radiation-sparing effects on salivary gland acini, changes in the composition of the oral microbiome may be a driver for improved outcomes in patients receiving proton radiation, with potentially worse outcomes in patients exposed to photon radiation therapy. To date, a head-to-head comparison of oral microbiome changes at a metagenomic level with longitudinal sampling has yet to be performed in these patient cohorts. Methods and Materials: To comparatively analyze oral microbiome shifts during head and neck radiation therapy, a prospective pilot cohort study was performed at the Maryland Proton Treatment Center and the University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center. A longitudinal metagenomic comparative analysis of oral microbiome shifts was performed at three time points (pre-radiation, during radiation, and immediately post-radiation). Head and neck cancer patients receiving proton radiation (n = 4) were compared to photon radiation (n = 4). Additional control groups included healthy age- and sex-matched controls (n = 5), head and neck cancer patients who never received radiation therapy (n = 8), and patients with oral inflammatory disease (n = 3). Results: Photon therapy patients presented with lower microbial alpha diversity at all timepoints, and there was a trend towards reduced species richness as compared with proton therapy. Healthy controls and proton patients exhibited overall higher and similar diversity. A more dysbiotic state was observed in patients receiving photon therapy as compared to proton therapy, in which oral microbial homeostasis was maintained. Mucositis was observed in 3/4 photon patients and was not observed in any proton patients during radiation therapy. The bacterial de novo pyrimidine biosynthesis pathway and the nitrate reduction V pathway were comparatively higher following photon exposure. These functional changes in bacterial metabolism may suggest that photon exposure produces a more permissive environment for the proliferation of pathogenic bacteria. Conclusion: Oral microbiome dysbiosis in patients receiving photon radiation may be associated with increased mucositis occurrence. Proton radiation therapy for head and neck cancer demonstrates a safer side effect profile in terms of oral complications, oral microbiome dysbiosis, and functional metabolic status.

12.
Eur Urol Oncol ; 7(2): 241-247, 2024 Apr.
Article En | MEDLINE | ID: mdl-37558543

BACKGROUND: Standard of care management for synchronous metastatic castration-sensitive prostate cancer (mCSPC) includes androgen deprivation therapy with a second-generation antiandrogen therapy and/or docetaxel. Recently, randomized data have demonstrated that prostate-directed therapy (PDT) is associated with an improvement in overall survival (OS) among patients with low-volume metastatic disease. Tumor genomics represents an additional dimension to define the clinical trajectory of patients with mCSPC. OBJECTIVE: To evaluate a high-risk (HiRi) genomic signature to predict the benefit from PDT. DESIGN, SETTING, AND PARTICIPANTS: We performed a single-institution retrospective review of men with synchronous low-volume mCSPC who underwent DNA panel sequencing of their tumor. Patients were classified according to the presence of HiRi mutation including pathogenic mutations in TP53, ATM, BRCA1, BRCA2, or Rb1. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The primary endpoint was to determine the effect of PDT on OS in patients with and without a HiRi mutation. A survival analysis was performed with the Kaplan-Meier method compared with log-rank test and multivariable Cox regression. The interaction between HiRi mutation and PDT was evaluated. RESULTS AND LIMITATIONS: A total of 101 patients with synchronous low-volume CSPC were included with a median follow-up of 44 mo. Approximately half of patients were found to have a HiRi pathogenic mutation (49%). Patients with HiRi mutations demonstrated median OS of 73 versus 66.8 mo (p = 0.3) for no PDT versus PDT. Conversely, patients without a HiRi mutation demonstrated a significant improvement in OS of 60 versus 105.3 mo (p < 0.001) for no PDT versus PDT. The p value for interaction for OS between PDT and HiRi mutation was statistically significant (p < 0.001). Limitations include the retrospective nature of the study. CONCLUSIONS: Here, we have identified a HiRi genomic biomarker that appears predictive for the lack of benefit from PDT in men with synchronous low-volume mCSPC. Further work validating these results is warranted. PATIENT SUMMARY: In this report, we evaluated a high-risk genomic biomarker to predict the benefit from prostate-directed therapy for men with synchronous low-volume metastatic castration-sensitive prostate cancer. We found that men without a high-risk mutation appear to experience a greater clinical benefit from prostate-directed therapy than those with a high-risk mutation.


Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostate/surgery , Prostate/pathology , Androgen Antagonists/therapeutic use , Retrospective Studies , Biomarkers, Tumor/genetics , Castration
13.
J Immunother Cancer ; 11(10)2023 10.
Article En | MEDLINE | ID: mdl-37793854

Stereotactic ablative body radiation (SABR) delivers high rates of local control in early-stage non-small cell lung cancer (NSCLC); however, systemic immune effects are poorly understood. Here, we evaluate the early pathologic and immunologic effects of SABR. Blood/core-needle tumor biopsies were collected from six patients with stage I NSCLC before and 5-7 days after SABR (48 Gy/4 or 50 Gy/5 fractions). Serial blood was collected up to 1-year post-SABR. We used immunohistochemistry to evaluate pathological changes, immune-cell populations (CD8, FoxP3), and PD-L1/PD-1 expression within the tumor. We evaluated T-cell receptor (TCR) profile changes in the tumor using TCR sequencing. We used the MANAFEST (Mutation-Associated Neoantigen Functional Expansion of Specific T-cells) assay to detect peripheral neoantigen-specific T-cell responses and dynamics. At a median follow-up of 40 months, 83% of patients (n=5) were alive without tumor progression. Early post-SABR biopsies showed viable tumor and similar distribution of immune-cell populations as compared with baseline samples. Core-needle samples proved insufficient to detect population-level TCR-repertoire changes. Functionally, neoantigen-specific T-cells were detected in the blood prior to SABR. A subset of these patients had a transient increase in the frequency of neoantigen-specific T-cells between 1 week and 3-6 months after SABR. SABR alone could induce a delayed, transient neoantigen-specific T-cell immunologic response in patients with stage I NSCLC.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Prospective Studies , Treatment Outcome , Receptors, Antigen, T-Cell/genetics
15.
Semin Radiat Oncol ; 33(3): 232-242, 2023 07.
Article En | MEDLINE | ID: mdl-37331778

Histopathology and clinical staging have historically formed the backbone for allocation of treatment decisions in oncology. Although this has provided an extremely practical and fruitful approach for decades, it has long been evident that these data alone do not adequately capture the heterogeneity and breadth of disease trajectories experienced by patients. As efficient and affordable DNA and RNA sequencing have become available, the ability to provide precision therapy has become within grasp. This has been realized with systemic oncologic therapy, as targeted therapies have demonstrated immense promise for subsets of patients with oncogene-driver mutations. Further, several studies have evaluated predictive biomarkers for response to systemic therapy within a variety of malignancies. Within radiation oncology, the use of genomics/transcriptomics to guide the use, dose, and fractionation of radiation therapy is rapidly evolving but still in its infancy. The genomic adjusted radiation dose/radiation sensitivity index is one such early and exciting effort to provide genomically guided radiation dosing with a pan-cancer approach. In addition to this broad method, a histology specific approach to precision radiation therapy is also underway. Herein we review select literature surrounding the use of histology specific, molecular biomarkers to allow for precision radiotherapy with the greatest emphasis on commercially available and prospectively validated biomarkers.


Neoplasms , Radiation Oncology , Humans , Radiation Oncology/methods , Neoplasms/genetics , Neoplasms/radiotherapy , Biomarkers , Medical Oncology/methods , Radiation Tolerance/genetics , Biomarkers, Tumor/genetics
16.
Int J Radiat Oncol Biol Phys ; 117(4): 1018-1027, 2023 11 15.
Article En | MEDLINE | ID: mdl-37364800

PURPOSE: This work describes the first implementation and in vivo study of ultrahigh-dose-rate radiation (>37 Gy/s; FLASH) effects induced by kilovoltage (kV) x-ray from a rotating-anode x-ray source. METHODS AND MATERIALS: A high-capacity rotating-anode x-ray tube with an 80-kW generator was implemented for preclinical FLASH radiation research. A custom 3-dimensionally printed immobilization and positioning tool was developed for reproducible irradiation of a mouse hind limb. Calibrated Gafchromic (EBT3) film and thermoluminescent dosimeters (LiF:Mg,Ti) were used for in-phantom and in vivo dosimetry. Healthy FVB/N and FVBN/C57BL/6 outbred mice were irradiated on 1 hind leg to doses up to 43 Gy at FLASH (87 Gy/s) and conventional (CONV; <0.05 Gy/s) dose rates. The radiation doses were delivered using a single pulse with the widths up to 500 ms and 15 minutes at FLASH and CONV dose rates. Histologic assessment of radiation-induced skin damage was performed at 8 weeks posttreatment. Tumor growth suppression was assessed using a B16F10 flank tumor model in C57BL6J mice irradiated to 35 Gy at both FLASH and CONV dose rates. RESULTS: FLASH-irradiated mice experienced milder radiation-induced skin injuries than CONV-irradiated mice, visible by 4 weeks posttreatment. At 8 weeks posttreatment, normal tissue injury was significantly reduced in FLASH-irradiated animals compared with CONV-irradiated animals for histologic endpoints including inflammation, ulceration, hyperplasia, and fibrosis. No difference in tumor growth response was observed between FLASH and CONV irradiations at 35 Gy. The normal tissue sparing effects of FLASH irradiations were observed only for high-severity endpoint of ulceration at 43 Gy, which suggests the dependency of biologic endpoints to FLASH radiation dose. CONCLUSIONS: Rotating-anode x-ray sources can achieve FLASH dose rates in a single pulse with dosimetric properties suitable for small-animal experiments. We observed FLASH normal tissue sparing of radiation toxicities in mouse skin irradiated at 35 Gy with no sacrifice to tumor growth suppression. This study highlights an accessible new modality for laboratory study of the FLASH effect.


Neoplasms , Radiation Injuries , Animals , Mice , X-Rays , Mice, Inbred C57BL , Radiography , Radiometry
17.
Res Sq ; 2023 Apr 21.
Article En | MEDLINE | ID: mdl-37131691

Background: Androgen deprivation therapy (ADT) with radiotherapy can benefit patients with localized prostate cancer. However, ADT can negatively impact quality of life and there remain no validated predictive models to guide its use. Methods: Digital pathology image and clinical data from pre-treatment prostate tissue from 5,727 patients enrolled on five phase III randomized trials treated with radiotherapy +/- ADT were used to develop and validate an artificial intelligence (AI)-derived predictive model to assess ADT benefit with the primary endpoint of distant metastasis. After the model was locked, validation was performed on NRG/RTOG 9408 (n = 1,594) that randomized men to radiotherapy +/- 4 months of ADT. Fine-Gray regression and restricted mean survival times were used to assess the interaction between treatment and predictive model and within predictive model positive and negative subgroup treatment effects. Results: In the NRG/RTOG 9408 validation cohort (14.9 years of median follow-up), ADT significantly improved time to distant metastasis (subdistribution hazard ratio [sHR] = 0.64, 95%CI [0.45-0.90], p = 0.01). The predictive model-treatment interaction was significant (p-interaction = 0.01). In predictive model positive patients (n = 543, 34%), ADT significantly reduced the risk of distant metastasis compared to radiotherapy alone (sHR = 0.34, 95%CI [0.19-0.63], p < 0.001). There were no significant differences between treatment arms in the predictive model negative subgroup (n = 1,051, 66%; sHR = 0.92, 95%CI [0.59-1.43], p = 0.71). Conclusions: Our data, derived and validated from completed randomized phase III trials, show that an AI-based predictive model was able to identify prostate cancer patients, with predominately intermediate-risk disease, who are likely to benefit from short-term ADT.

18.
Eur Urol ; 84(6): 531-535, 2023 12.
Article En | MEDLINE | ID: mdl-37173210

In metastatic castration-sensitive prostate cancer (mCSPC), disease volume plays an integral role in guiding treatment recommendations, including selection of docetaxel therapy, metastasis-directed therapy, and radiation to the prostate. Although there are multiple definitions of disease volume, they have commonly been studied in the context of metastases detected via conventional imaging (CIM). One such numeric definition of disease volume, termed oligometastasis, is heavily dependent on the sensitivity of the imaging modality. We performed an international multi-institutional retrospective review of men with metachronous oligometastatic CSPC (omCSPC), detected via either advanced molecular imaging alone (AMIM) or CIM. Patients were compared with respect to clinical and genomic features using the Mann-Whitney U test, Pearson's χ2 test, and Kaplan-Meier overall survival (OS) analyses with a log-rank test. A total of 295 patients were included for analysis. Patients with CIM-omCSPC had significantly higher Gleason grade group (p = 0.032), higher prostate-specific antigen at omCSPC diagnosis (8.0 vs 1.7 ng/ml; p < 0.001), more frequent pathogenic TP53 mutations (28% vs 17%; p = 0.030), and worse 10-yr OS (85% vs 100%; p < 0.001). This is the first report of clinical and biological differences between AMIM-detected and CIM-detected omCSPC. Our findings are particularly important for ongoing and planned clinical trials in omCSPC. PATIENT SUMMARY: Metastatic prostate cancer with just a few metastases only detected via newer scanning methods (called molecular imaging) is associated with fewer high-risk DNA mutations and better survival in comparison to metastatic cancer detected via conventional scan methods.


Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Docetaxel/therapeutic use , Molecular Imaging , Genomics , Castration
19.
Eur Respir J ; 62(1)2023 07.
Article En | MEDLINE | ID: mdl-37142338

BACKGROUND: In idiopathic pulmonary fibrosis (IPF), myofibroblasts are key effectors of fibrosis and architectural distortion by excessive deposition of extracellular matrix and their acquired contractile capacity. Single-cell RNA-sequencing (scRNA-seq) has precisely defined the IPF myofibroblast transcriptome, but identifying critical transcription factor activity by this approach is imprecise. METHODS: We performed single-nucleus assay for transposase-accessible chromatin sequencing on explanted lungs from patients with IPF (n=3) and donor controls (n=2) and integrated this with a larger scRNA-seq dataset (10 IPF, eight controls) to identify differentially accessible chromatin regions and enriched transcription factor motifs within lung cell populations. We performed RNA-sequencing on pulmonary fibroblasts of bleomycin-injured Twist1-overexpressing COL1A2 Cre-ER mice to examine alterations in fibrosis-relevant pathways following Twist1 overexpression in collagen-producing cells. RESULTS: TWIST1, and other E-box transcription factor motifs, were significantly enriched in open chromatin of IPF myofibroblasts compared to both IPF nonmyogenic (log2 fold change (FC) 8.909, adjusted p-value 1.82×10-35) and control fibroblasts (log2FC 8.975, adjusted p-value 3.72×10-28). TWIST1 expression was selectively upregulated in IPF myofibroblasts (log2FC 3.136, adjusted p-value 1.41×10- 24), with two regions of TWIST1 having significantly increased accessibility in IPF myofibroblasts. Overexpression of Twist1 in COL1A2-expressing fibroblasts of bleomycin-injured mice resulted in increased collagen synthesis and upregulation of genes with enriched chromatin accessibility in IPF myofibroblasts. CONCLUSIONS: Our studies utilising human multiomic single-cell analyses combined with in vivo murine disease models confirm a critical regulatory function for TWIST1 in IPF myofibroblast activity in the fibrotic lung. Understanding the global process of opening TWIST1 and other E-box transcription factor motifs that govern myofibroblast differentiation may identify new therapeutic interventions for fibrotic pulmonary diseases.


Idiopathic Pulmonary Fibrosis , Myofibroblasts , Humans , Mice , Animals , Myofibroblasts/metabolism , Chromatin , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Fibroblasts/metabolism , Collagen/genetics , Collagen/metabolism , Fibrosis , Bleomycin , Transcription Factors/genetics , RNA/metabolism , Nuclear Proteins/genetics , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism
20.
Int J Radiat Oncol Biol Phys ; 117(2): 370-377, 2023 10 01.
Article En | MEDLINE | ID: mdl-37137444

PURPOSE: Intermediate-risk prostate cancer is a heterogeneous disease state with diverse treatment options. The 22-gene Decipher genomic classifier (GC) retrospectively has shown to improve risk stratification in these patients. We assessed the performance of the GC in men with intermediate-risk disease enrolled in NRG Oncology/RTOG 01-26 with updated follow-up. METHODS AND MATERIALS: After National Cancer Institute approval, biopsy slides were collected from NRG Oncology/RTOG 01-26, a randomized phase 3 trial of men with intermediate-risk prostate cancer randomized to 70.2 Gy versus 79.2 Gy of radiation therapy without androgen deprivation therapy. RNA was extracted from the highest-grade tumor foci to generate the locked 22-gene GC model. The primary endpoint for this ancillary project was disease progression (composite of biochemical failure, local failure, distant metastasis, prostate cancer-specific mortality, and use of salvage therapy). Individual endpoints were also assessed. Fine-Gray or cause-specific Cox multivariable models were constructed adjusting for randomization arm and trial stratification factors. RESULTS: Two-hundred fifteen patient samples passed quality control for analysis. The median follow-up was 12.8 years (range, 2.4-17.7). On multivariable analysis, the 22-gene GC (per 0.1 unit) was independently prognostic for disease progression (subdistribution hazard ratio [sHR], 1.12; 95% confidence interval [CI], 1.00-1.26; P = .04), biochemical failure (sHR, 1.22; 95% CI, 1.10-1.37; P < .001), distant metastasis (sHR, 1.28; 95% CI, 1.06-1.55; P = .01), and prostate cancer-specific mortality (sHR, 1.45; 95% CI, 1.20-1.76; P < .001). Ten-year distant metastasis in GC low-risk patients was 4% compared with 16% for GC high-risk patients. In patients with lower GC scores, the 10-year difference in metastasis-free survival rate between arms was -7%, compared with 21% for higher GC patients (P-interaction = .04). CONCLUSIONS: This study represents the first validation of a biopsy-based gene expression classifier, assessing both its prognostic and predictive value, using data from a randomized phase 3 trial of intermediate-risk prostate cancer. Decipher improves risk stratification and can aid in treatment decision-making in men with intermediate-risk disease.


Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/radiotherapy , Prostate-Specific Antigen , Androgen Antagonists , Retrospective Studies , Neoplasm Grading , Genomics , Disease Progression
...